
First Worldwide Serial Rights and Nonexclusive Reprint Rights 
Copyright © 2008 Connective Logic Systems. All rights reserved. 

John Gross and Jeremy Orme 
john@connectivelogic.co.uk 

jeremy@connectivelogic.co.uk 
 

Feature article (Part 1) 
 

 
Multi-Core OO – An Introduction to the Blueprint To olset 
 

The Problems Introduced by Concurrency 

The era of multi-core programming has arrived.  Many influential commentators have 
pointed out that concurrent programming requires developers to learn new techniques, 
different from those adopted for standard sequential programs.  In their paper, Software 
and the concurrency revolution, Microsoft’s Herb Sutter and James Larus describe how: 

 “humans are quickly overwhelmed by concurrency and find it much 

more difficult to reason about concurrent than sequential code”. 

However, when humans perform everyday tasks like playing sport or driving cars, they 
demonstrate an innate ability to deal with complex concurrent situations.  Even more 
ironically, standard Object-Oriented models, fundamental to modern software practice, 
provide an inherently concurrent view of the world that is divorced from its 
eventual mapping to processes and hence CPU cores.   

Conceptually at least, OO allows asynchronously executing objects to commune with 
adjacent objects by sending messages to their member functions; and so at its highest 
level of abstraction object behavior is intrinsically parallel.  So why isn’t multi-core seen 
as an enabling technology that facilitates the physical implementation of such a familiar 
and intuitive logical abstraction? 

The answer to this draws attention to another even more fundamental problem; the 
discontinuity that exists between highly abstracted software designs such as those 
provided by the UML; and the software implementations that manifest programmers’ 
interpretations of these designs.  When modeling systems (formally or informally), 
designers are able to think at a highly intuitive level of abstraction, and at this level 
most developers are able to visualize concurrency with very little effort.  However, 
implementing these models is another issue altogether. 

Pre multi-core/many-core, OO has thrived in a single core, single machine 
environment.  In this special case, synchronous function calling can replace the 
asynchronous invocation idealized in the original OO model and the ‘stack’ can take 
care of data lifetimes in a simple and intuitive manner: 

 



In the sequential world, mapping an OO model (e.g. parts of a UML design) to a single 
threaded executable is a largely automatable task and is therefore an ideal candidate 
for code generation.  However mapping a model to a multi-threaded implementation 
requires additional synchronization and scheduling logic that is assumed, but not 
prescribed, by typical models; mapping to multiple process implementations, which 
involves the generation of complex messaging logic, only adds to the problem. 

The end result of this is that programmers are required to interpret concurrent OO 
models by hand, make assumptions about the designer’s intentions, and then 
implement significant amounts of difficult code, versions of which may or may not be in 
step with corresponding design versions. 

The industry’s response to this has been to provide engineers with new languages, 
and/or language extensions/libraries that aim to provide engineers with the highest 
levels of concurrency abstraction possible.  Not surprisingly this works fairly well for the 
special case of ‘regular’ concurrency (e.g. the parallelization of for-loops), but fares less 
well in the more general irregular cases that appear in day to day programming.   

The reason that most ‘concurrency specialists’ would agree with the sentiments 
expressed in Herb Sutter and James Larus’ article, referenced above, becomes apparent 
with a first foray into the implementation of a physically concurrent object model 
(required to exploit multi-core). 

The principal goal of the Blueprint development environment is to present the developer 
with OO’s highly intuitive view of concurrently executing objects, to explicitly allow 
them to express their synchronization and scheduling logic with a similarly high level of 
abstraction, and to do so in a manner that makes no assumptions about the target 
platform’s architecture and/or memory topology.  Optimally accreting the application’s 
functionality to one or more multi-core machines is a separate (and orthogonal) activity, 
which means that unless the application is intrinsically platform-locked the ‘same’ 
application code will execute across any platform without modification. 

The ‘Divide and Conquer’ Approach 

There’s ‘more than one way to skin a cat’, and developing new languages that explicitly 
address concurrency is one way forward, but is anathema for developers that have 
significant investment in legacy (C++, C#, Java) code.  The extension of existing 
languages and/or provision of libraries are alternative approaches, but since they are 
essentially retrospective, are likely to involve compromise somewhere along the line. 

Most would probably agree that algorithmic logic is normally best considered as a set of 
sequential steps involving conditional logic (e.g. if-then-else).  Scheduling logic on the 
other hand is inherently parallel and is more naturally considered in terms of branching 
and merging metaphors.   

Scheduling and processing are clearly different, and separable concerns; and so an 
alternative way forward is to allow developers to specifically describe their application’s 
concurrency in terms of it’s connectivity and dependency, but leave algorithmic and 
business logic in it’s current sequential form.  This means that existing applications can 
be largely unaffected by migration to multi-core and most developers can continue to 
work in a familiar sequential environment using familiar tools and languages. 

Equally importantly, concurrency needs to be expressed in a manner that does not 
make any assumptions about the target platform; number of cores, number of 
machines, memory distribution and so on.  This means that programmers need to be 
presented with a simple and intuitive ‘idealized platform’.  Mapping functionality to 
target hardware therefore needs to be another separate stage that should not involve or 
concern application developers. 



Visual Concurrency 

Blueprint uses a specialized Visual Programming paradigm to deal with concurrency 
aspects.  This allows descriptions to include branching and merging information in a 
way that textual equivalents alone do not readily support.  In the concurrency domain, 
statement ‘order’ is replaced by ‘connectivity’, but the algorithmic/business domain 
remains sequential and is decoupled from its scheduling. 

 

Conventional text programs derive much of their 'meaning' through precise statement 
ordering, whereas an electronic circuit diagram derives equivalent meaning through its 
connectivity; this means that the eye can scan circuits in many different orders and still 
derive exactly the same meaning.   

The obvious point here is that connectivity can branch and merge and is therefore an 
ideal medium for describing concurrency.  It is no coincidence therefore that electronic 
circuitry is usually presented visually, whilst ASIC algorithmic programming (implicitly 
parallel) is more likely to involve textual descriptions (e.g. VHDL).  So arguably, it is the 
nature of the logic, rather than the nature of the physical hardware, that determines 
the most intuitive programming approach; and the arrival of multi-core should not be 
allowed to drastically change the way that developers think.   

It is therefore necessary to find a way to map the traditional OO model to code; and to 
do this it is also necessary to abstract the platform, capture the application’s 
scheduling constraints, and use a new generation of translators to perform the ‘heavy 
lifting’ required to take OO’s high level concepts, and generate the low level 
synchronization code that implements it. 

The Blueprint Tool-Chain 

The first step to providing developers with OO’s intuitive and widely accepted 
concurrent programming abstraction is to create an ‘idealized’ environment for 
concurrent applications to execute within; and the second is to provide a ‘series’ of 
independent (orthogonal) descriptions that take the high level OO platform independent 
abstraction, all the way through to the deployment of an arbitrarily runtime-scalable set 
of executables.  The articles that follow will describe each of these steps, and where 
relevant, reference early adopter projects like the UK’s Surface Ship Torpedo Defense 
(SSTD) system as proof of concept. 



 
Blueprint separates the mapping of high level program logic to physical executables into 
four independent stages;   

The first stage is to develop an application for the idealized Single Virtual Process 
platform.  In most cases it is possible to develop and debug this as a single process on a 
standard laptop or desktop (specialized I/O devices can be modeled using Blueprint 
devices).  This involves two distinct components; a textual algorithmic/business logic 
description, and a visual concurrency constraint description. 

The second (independent) stage is to use the accretion editor to map program logic to 
one or more distinct ‘processes’.   

The third stage is to use the colony editor to identify those processes that are to be 
‘slaved’ (see scale-on-demand).  The translator can then build each required process 
type.   

Finally the task manager is used to allocate instances of each process type to 
appropriate machines in the available network.   

The latter three stages are relatively lightweight and do not involve modifying the 
application itself.  There is no limit to the number of accretions, colonies or network 
configurations that can be applied to a given logical Blueprint application.  If the 
application itself is correctly written (no undetected race conditions) then each mapping 
will usually execute repeatably (albeit at different speeds), allowing most debugging to 
be undertaken with a simple single process (and often single threaded) build. 
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Feature article (Part 2) 
 

 
Multi-Core OO - A Diagram Is Worth a Thousand Lines  of 
Code 
 

Abstract 

The era of multi-core programming has arrived.  Many commentators have pointed out 
that concurrent programming requires us to learn new techniques, different from those 
adopted for standard sequential programs.  In their paper, Software and the 
concurrency revolution, Microsoft’s Herb Sutter and James Larus describe how: 

 “humans are quickly overwhelmed by concurrency and find it much 
more difficult to reason about concurrent than sequential code”. 

However, we know that when playing sports or driving a car, humans demonstrate an 
innate ability to deal with complex concurrent activities.  Why are we so good at 
managing our concurrent environment but so poor at describing it programmatically? 

The Blueprint toolset is built on the premise that we actually have no problem 
understanding complex concurrency – until we project it into the one-dimensional world 
of text.  For this reason, a visual representation is much easier to work with than its 
textual equivalent.  There are some cases where text is obviously more intuitive – such 
as parallelizing data-parallel loops – and here technologies such as Microsoft’s ‘Task 
Parallel Library’ (TPL) and/or Intel’s ‘Threading Building Blocks’ (TBB) can be intuitive 
and productive. 

A Language Just For Concurrency 

Blueprint provides a means of separating an application’s concurrency logic from its 
algorithmic/business logic, and uses a specialized Visual Programming paradigm to 
deal with the concurrency aspects.  This allows descriptions to include branching and 
merging information in a way that textual equivalents alone do not support.  In the 
concurrency domain, statement ‘order’ is replaced by ‘connectivity’, but the 
algorithmic/business domain remains sequential and is decoupled from its scheduling. 

 



Blueprint presents the application developer with a high level Object Oriented (OO) view 
of the world meaning it: 

• is implicitly concurrent; 

• makes no assumptions about target hardware. 

This could therefore be a single machine, and/or a heterogeneous network of machines.   
This means that applications can be built for any process configuration without the 
need to modify program logic (see Late Accretion below). 

Asynchronously executing class instances can be joined together in any way, provided 
that the prototypes at each end are compatible.  Adjacent classes synchronize through 
their connections (see ‘Circuits’ below).  They can be archived and re-used through a 
visual drag-drop-and-connect metaphor. 

 

Blueprint has the concept of ‘colonies’ – a network of compute nodes in which any node 
can process any task – and this allows additional slave machines to be recruited and/or 
retired at any stage of application execution without loss of data (Scale-on-Demand).   

In addition, the runtime scheduler supports task prioritization, and Blueprint 
applications will execute preemptively at network scope.  This gives the resulting 
applications an implicit distributed real-time capability. 

This article examines the rationale for choosing visual over textual in the concurrency 
domain and looks at how Blueprint uses its diagrammatic approach to bring additional 
capabilities to developer’s existing multi-core toolboxes. 

The Case for Visual Concurrency 

The Football Analogy 

Anybody who has played football (American, Australian, Rugby or Soccer) knows that 
you need to try and keep track of each other player on the field, as well as the ball, the 
referee and yourself; each musician in an orchestra must synchronize with the 
conductor and each other musician.  It would therefore seem that many people are 
actually very good at dealing with concurrency. 



 

However, although most of us can 'see' any number of written sentences at the same 
time (see above), few of us could 'read' more than one sentence at the same time.  Even 
the most experienced stock market traders would probably be challenged by three or 
more simultaneous telephone calls; our linguistic skills (textual and verbal) appear to 
be more or less sequential. 

This should not be surprising because linguistic meaning is heavily dependent on word 
order, and so ‘watching’ a football match is a very different experience from listening to 
it on the radio, or reading about it in a paper.  Films can usually tell stories in less time 
than books because apart from anything else, the information bandwidth is higher (but 
of course that does not necessarily make it a more satisfying aesthetic experience!). 

When is Visual Programming Applicable? 

Few would disagree that the best way to express an FFT or Matrix inversion algorithm is 
almost certainly textual; VHDL is now used by electronics engineers for the domains in 
which it is appropriate.  In the same way that the electronics industry now adopts a 
hybrid visual/textual approach, software engineering can also benefit from the same 
specializations. 

Few people would disagree that GUIs are best developed using graphical drag-and-drop 
metaphors, class designers are also making increased use of visual semantics, but 
equally few people would try to use pictures to describe a recursive quick-sort 
algorithm.  TPL, TBB and Blueprint are clearly not mutually exclusive. 

Conventional text programs derive much of their 'meaning' through their statement 
ordering, whereas an electronic circuit diagram derives equivalent meaning through its 
connectivity (which can branch and merge).  In the specific cases where statement order 
doesn't matter, then there is typically potential for concurrent execution. 

Most text languages are primarily concerned with algorithmic logic (usually branching 
on particular data values) and don't have an intuitive way of expressing concurrency in 
general, particularly the more complex irregular dependencies like “f3 can be executed 
when f1 and f2 complete, but f1 can't be executed while f0 is executing”. 

Whilst Parallel-For, Map-Reduce and other existing mechanisms can address ‘regular’ 
parallelism in an effective  ‘bottom-up’ manner, the ‘futures’ approach to irregular 
problems that involve more than half a dozen concurrent threads of execution can be 
difficult to conjure with. 



A Simple Example 

Consider the pseudo-C example function below; 

  
T8 f0( T1 t1, T2 t2 ) 
{ 
   T3 t3; T4 t4; T5 t5; T6 t6; T7 t7; T8 t8; 
 
   t3 = f1 ( t1 ); 
   t4 = f2 ( t2 ); 
   t5 = f3 ( t2 ); 
   t6 = f4 ( t3, t4, t5 ); 
   t7 = f5 ( t3, t4 ); 
   t8 = f6 ( t6, t7 ); 
   return t8;  
} 
 

 

If we analyze the code in the function above and assume for now that these functions 
have no relevant side-effects, then we can produce an informal dependency diagram 
such as the one shown below.   

 

In the diagram above 

• ‘boxes’ represent data objects 

• circles represent sequential user functions 

• arrows represent data flow 

In this informal example, 

• diverging arrows represent ‘distribution’ 

• converging arrows represent ‘collection’ 

Functions become executable when all of their inputs are collected.  So in this example, 
the f4 function cannot execute until f1, f2 and f3 have all executed, but the order in 
which they complete doesn’t concern f4.  Anecdotally at least, most people would 
appear to be able to appreciate the logical dependency, and hence logical concurrency 
from this diagram, more rapidly and readily than they could from the sequential text 
that it represents (see above). 

 



Separation of Concerns 

More importantly, information concerning the data objects, and the operations 
performed by the functions f1…f6, is not required in order to do this; likewise, the data 
objects and functions that operate on them are not concerned with scheduling.  This 
highlights the fact that at a high enough level of abstraction algorithmic logic and 
scheduling logic are separable; and in this instance, one is textual and the other visual. 

The concurrency description is localized rather than being dispersed across the 
application, and is uncluttered by algorithmic information that is not relevant to 
concurrency.  When we combine the two descriptions we have a concurrent description 
that makes no assumptions about its target hardware (this will be addressed later).  
The figure below shows a formal, machine translatable, Blueprint implementation of the 
informal dependency diagram above. 

 

Amongst other things, the symbolism disambiguates branching and merging.  
Branching typically infers ‘sharing’ but could equally well mean ‘competing’; merging 
may infer ‘collection’ (wait for all), but could also mean ‘multiplexing’ (wait for any).  It 
also addresses issues like destructive/non-destructive reads and so on.  The diagram 
above illustrates how the symbolism uses ‘event operators’ (e.g. collectors and 
distributors) to precisely describe the required execution constraints.   

The translator compiles the diagrams into runtime calls, in the same way that high level 
language compilers generate assembler/object code, but since developer code and 
generated code are separated, the details of the generated code are not relevant to the 
developer.  Because locks and other synchronization mechanisms are machine 
managed, their granularity is not limited by what humans can conjure with; the 
generated code is therefore able to lock at a very fine granularity and minimize effects 
due to Amdahl’s law. 

Conclusion 

In summary, what Blueprint’s visual approach aims to do, is to separate an 
application’s scheduling logic from its algorithmic/business logic.  It replaces 'order' 
with 'connectivity' and thus exposes concurrency in a way that avoids 'reading'.  In 
particular, it allows for branching and merging operations to be unambiguously 
specified, which in turn allows the scheduling logic to be decomposed into 
simultaneously visible, but independently analyzable, strands of execution.  The order 
with which your eyes scan a Blueprint circuit is only important if you are trying to 
extract some particular information such as data-flow or event-flow; the parallelism and 
dependencies can be seen at a glance (the branching and merging is obvious). 
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Multi-Core OO – Gaining Freedom from the Platform 
 

Abstract 

Conceptually at least, standard Object-Oriented models allow objects to invoke adjacent 
objects by sending messages to their member functions; and so at its highest level of 
abstraction OO has an inherently concurrent view of the world that is divorced from its 
eventual mapping to processes and hence CPU cores. 

Unfortunately the potential parallelism of OO's model is difficult to realize from this 
high level view alone because there is insufficient information to precisely describe the 
communication and synchronization which is required to ensure correct scheduling.  
Applications that do assume particular memory models (distributed or shared), network 
topologies, core counts, operating systems, and other such details will almost inevitably 
be tied to them and so all of these issues have to be abstracted out. 

This part of the article considers an ‘infrastructural’ class equivalent that rectifies these 
problems; transparently distributing its processing load across the available hardware 
and communicating asynchronously with adjacent infrastructural classes through 
strongly prototyped connections. 

Freedom from the Platform 

Traditionally, OO has thrived where it has been possible to assume a single core, single 
machine environment.  In such an environment, synchronous function calling can 
replace the asynchronous invocation idealized in the original OO model and the stack 
takes care of data lifetimes: 

 



However, the advent of multi-core has led programmers to demand OO to work in an 
environment where synchronous invocation is no longer viable because it would stall 
threads and waste time and/or resources. 

Blueprint was designed to allow developers to work at the highest levels of OO 
abstraction and be able to make optimal use of multi-core hardware without needing to 
consider low level details like threading, message-passing and arbitration (semaphores 
and locks). 

In order to achieve this, it has to enable developers to describe synchronization and 
communication at a very high level of abstraction using a visual metaphor.  The ‘heavy 
lifting’ required to implement the lower level synchronization etc, is performed by the 
diagram translator, which can generate C++ and/or C# as required. 

 

This means that the notion of a ‘class’ needs to be extended to include the additional 
information required by the translator.  Blueprint’s concurrent equivalents of classes 
are referred to as circuits. 

What Is A Circuit? 

Most developers will be familiar with the concept of a 'class' in an OO sense, and the 
intention of Blueprint circuitry is to provide a concurrent (infrastructural) equivalent.  
Their purpose is therefore to localize, encapsulate, archive and re-use program logic 
(algorithmic and infrastructural).   

A C++ class consists of a declaration where its members are specified and a definition 
where the code within those class members resides.  Similarly, a circuit has a prototype 
that describes its public interface and it has a definition that contains the executable 
concurrent code. 

 

Circuit Prototype (Declaration) 

 
// Matrix class declaration 
class Matrix 
{ 
public: 
   // Public interface 
   void inputCell( 
      Input in[N][M]); 
 
   Row[] outputRow(); 
 
   Col[] outputCol(); 
 
private: 
   // Internal state 
   // ... 
}; 



 

Circuit Body (Definition) 

// Matrix class definition 
void Matrix::inputCell( 
   Input in[N][M]) { 
   // Read cell data and begin 
   // processing 
} 
 
Row[] Matrix::outputRow() { 
   // Output row data 
} 
 
Col[] Matrix::outputCol() { 
   // Output col data 
} 

Circuits may contain any of the following items: 

• Blueprint’s intrinsic primitives; 

• Instantiations of other circuit definitions; 

• References to other circuit definitions. 

The primitive symbols provide the fundamental language for defining the concurrent 
behavior of the circuitry.  Instantiations and references allow encapsulated circuitry to 
be re-used by creating a new instance of the circuitry or connecting to an instance that 
was created elsewhere. 

When a new instance of a class is created, it is allocated memory for its data members.  
This means that any number of classes can be instantiated and they all work on their 
own area of memory.  Similarly, circuits have a concept of definitive state so there is no 
limit to the number of named circuit instances that can be created. 

 

Circuit instances can be joined together in any way, provided that the prototypes at 
each end are compatible.  This means that the complex array output of an FFT for 
example, can be directly connected to the input of a complex array filter, an RSS feed 
adaptor component could be connected to any number of business processes, and so 
on.   

Classes are used for both modeling data (e.g. data collected from a sensor) and for 
defining active behavioral components (e.g. a sonar beam-former).  Circuits can be 
freely interchanged with the classes but data classes are typically left as classes and 
exchanged between circuits that implement the active behavior.  Due to this 



interchangeability, migration from legacy application classes to their circuit-equivalents 
can be performed incrementally.  Conventional classes can invoke circuits; and vice-
versa. 

The Differences between Circuits and Classes 

Whilst class instances are passive entities that are 'executed' by one or more explicitly 
created threads, circuit instances can be thought of as active entities that execute 
asynchronously and communicate through their connections.  Synchronization is 
mostly achieved through the use of high level operations like collection, multiplexing, 
distribution, repetition and their reciprocal operations; splitting, de-multiplexing, 
competing and reduction.  Explicit locking is provided but is seldom required. 

 

Circuit member functions (methods) can be multi-dimensional, and each element can 
own its own individual state; this provides implicit concurrency and in many cases 
replaces constructs like Parallel-For (see example above). It is also possible to specify 
the number of times that member function elements can be re-entered simultaneously 
without blocking (reentrancy). 

There is no limit to the concurrency that a circuit component or circuit instance can 
have.  If a multi-dimensional component has multi-dimensional member components 
then the resulting concurrency will be the product of the two component 
concurrencies.  If the application's synchronization logic permits two or 
more components to execute simultaneously then the resulting concurrency will be the 
sum of the two or more component concurrencies, and so-on.  This means that 
concurrency can be incrementally realized and accrued in a top-down manner, rather 
than starting with low level loops; but both approaches will work interoperably as 
appropriate (methods can contain TPL, TBB etc). 

Building Applications from Components 

Circuit components are intrinsically 'self distributing' and so developer code doesn't typically 

need to know anything about their internals in order to re-use them; it’s usually just a case 

of connecting the appropriate input and output pins (a prototyped operation).  Since most 

user defined circuits are arbitrarily compose-able, they can be archived into ‘topic’ libraries 

and re-used across projects.  This means that applications can be created by domain experts 

using a drag-drop-and-connect metaphor. 

The example below shows a simplified military sonar system constructed from re-usable 

components (circuit instances). 



 

 

Conclusion 

The Object-Oriented model is conceptually asynchronous in that its actors can invoke 
each other’s methods concurrently.  In single core systems, the OO model can be 
mapped to classes and synchronous invocation, but this approach does not work for 
multi-core and distributed systems because of the limitations of the stack based call-
and-return mechanism.  Applications using synchronous invocation are doomed to 
spend the rest of their life executing in a single thread or suffer huge upheaval on each 
platform change as the code is modified to break the application into chunks 
appropriate for that platform. 

Blueprint provides an alternative to a regular class, called a circuit.  Circuits have many 
of the desirable properties of classes that allow code to be encapsulated and re-used but 
they are self-propelled rather than relying on thread(s) to drive their execution and they 
use connections instead of calling to invoke each other’s operations.  This means that 
complex applications can be built from composing any number of circuit instances, as 
required, and the computation will be automatically distributed across the available 
hardware with an even load-balance. 
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Multi-Core OO – Beyond the Single Process 
 

Abstract 

The parts two and three of this series proposed a means of maintaining an OO 
paradigm in a multi-core environment.  This addressed the problem of mapping 
concurrently executing components to an arbitrary number of CPU cores in a 
symmetric shared memory environment.  However, it did not deal with the more difficult 
issue of mapping concurrent functionality to multiple processes – each with their own 
disparate memory space and each running their own operating system instance. 

This article will explain why next generation “many-core” processors are likely to make 
this problem relevant to mainstream developers, what challenges it raises and how it 
can be addressed with the OO model still in-tact. 

In addition, it will show how multiple mappings of functionality to processes can be 
achieved without the need to modify the application itself (as described in parts two and 
three of this series).  Accretion of functionality to processes is a lightweight task, and 
this means that applications can be developed, debugged and maintained in a 
convenient ‘single process’ form, but deployed in the field with the benefit of scalable 
processing resources. 

Why is Multiple-Process Programming Important? 

Multiple-Process programming has always been relevant for distributed applications 
because a cluster of machines are not able to execute a single process so developers 
have always had the task of mapping functionality to disparate processes. 
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Most engineers would agree that because of this, distributed applications are more 
difficult to implement than their single process equivalents but up until now (and 
despite the arrival of multi-core) mainstream developers haven’t needed to consider this 
particular problem.   



 
This situation is almost certain to change in the very near future because the prevailing 
view is that symmetric memory architectures are unlikely to scale past 8 CPUs.  
Amongst others, video games developers migrating to the IBM CELL BE have already 
taken the plunge, and the Tilera64 software environment also predicts ‘message-
passing’ as a ‘next-generation’ programming model. 
 
What Challenges Does this Raise? 

As discussed earlier, at its highest level of abstraction the OO paradigm does not make 
any assumptions about the target platform.  Whilst it is relatively straight forward to 
abstract operating system calls and even core-counts, it is more difficult to abstract 
process topology.  Efficiently re-mapping an application in this way typically involves 
considerable low-level re-writes.  Why is this? 

Process topology is implicitly assumed by the choice of each component's 
communication paradigm.   If two objects find themselves co-located in the same 
process, then calling each other’s methods directly, or using shared memory 
arbitration and reference is the simplest and most efficient means of exchanging 
information.  If however, objects find themselves in adjacent processes that do not 
share memory, then data needs to be moved between them using a message-passing 
paradigm; typically using TCP/IP sockets or some other equivalent. 

 

To avoid becoming locked into a particular topology, objects must use the same API 
regardless of whether they are co-located in the same process or separated across a 
process boundary. 

There are many parallel APIs that assume shared memory, including: 

• Intel’s Threading Building Blocks; 

• Microsoft’s Task Parallel Library; 

• Intel’s OpenMP 

There are also many parallel APIs that explicitly assume distributed memory and 
therefore move data, including: 

• Parallel Virtual Machine (PVM); 

• Intel’s Message Passing Interface (MPI) 



The fact that parallel application code usually assumes particular memory architecture 
arguably limits component re-use and portability in an even more fundamental way 
than choice of operating system. 

A compromise solution is to ‘always’ use a message passing API (even if the components 
are in the same memory space).  This means that topology doesn't matter quite so much 
because it will work in all cases.  Unfortunately this imposes a performance penalty as 
co-located objects unnecessarily trawl large volumes of data across the bus and this 
can outweigh any gains made from using multi-core technology. 

 

Another problem is that load balance can be difficult to calculate statically and is prone 
to change with the modification and/or addition of functionality.  The fact that core 
counts are expected to double every 18 months for some time to come means that 
different customers are likely to have different platforms, comprised of machines with 
differing core counts. 

In the worst case, ‘turn-key’ applications that assume a particular functional accretion 
may require different versions for different platforms.  This problem is compounded by 
the fact that load-balance frequently depends on the data-set that is being processed 
and so cannot necessarily be discovered until runtime (see part 5; ‘Scale-on-Demand’). 

Perhaps the most difficult problem however, is providing a means of ‘describing’ the 
application’s accretion(s); and to do so in a way that doesn’t impact on the application 
source as outlined in parts 2 and 3 of this article. 

• Accretions must be independent of each other; 

• Translation of the accretion description(s) along with the application source to 
produce a final executable for each identified process must be automatable; 

• Accretion must be a ‘cheap’ operation, so that it is feasible to ‘experiment’; 

• Accretion must not require any knowledge of the application other than its 
approximate CPU and bandwidth budgets. 

 
How are these Issues Addressed? 

In order to provide an efficient solution that doesn’t gratuitously move data, the 
Blueprint programmer is presented with a beefed-up ‘reference’ view of the world.  This 
is referred to as the ‘Single Virtual Process’ (SVP).  The developer sees all data by 
reference, but if two components actually find themselves located in adjacent processes 
at execution time, then the runtime will: 

• Transparently move the referenced data 



• Cache it locally 

• Garbage-collect it when it is no longer referenced. 

The developer also assumes an unbounded number of ‘logical’ preemptive threads, but 
this is actually implemented using a minimal number of system managed worker 
threads to minimize resource requirements. 

Single Virtual ProcessNetwork
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To the programmer, the SVP model appears like an SMP programming model operating 
at network scope as the data always appears to be accessible by reference.  The runtime 
must keep track of the size of each referenced object so that it can transparently move 
data between disparate memory spaces and sustain this ‘illusion’ of direct reference.   
This topic is beyond the scope of this introductory article but is achieved through the 
use of ‘records’ which are data wrappers that allow for variable sized data. 

At the top level, the application needs the concept of a set of asynchronously executing 
autonomous components.  The asynchronous nature of these components is crucial 
because unless they are all co-located to the same process, they will need to execute 
asynchronously in the true sense (probably on different machines).  In order for these 
components to execute asynchronously, global (inter-process) synchronization is 
required, but it has to be provided at a high enough level of abstraction to avoid making 
any assumptions about process and/or thread proximity. 

Blueprint addresses the first issue through the concept of ‘circuits’ (concurrently 
executing classes), and the second through its use of high level ‘event operators’ 
(collectors, distributors, multiplexers etc); these mechanisms are described in earlier 
parts of this article. 

 



 

The diagram above shows a typical ‘circuit’ definition.  In this example, collectors and 
distributors are used to coordinate and synchronize concurrent method execution 
within the circuit, and the public objects (exposed by their consumer and provider pins) 
provide synchronization between adjacent circuit instances.   

 

 

The circuit above shows the top level of a simplified military sonar system.  Each ‘sub-
circuit’ executes asynchronously and synchronizes with each other ‘sub-circuit’ through 
its public event operators. 

Objects (‘connectors’) must be able to locate and connect-to other objects (their 
‘connectees’) and this is achieved using the runtime’s registration service.  In order for 
the translator to be able to generate the necessary code to do this, objects (and their 
exposed ‘pins’) need to be uniquely named so that the connectivity information provided 
by the circuitry can be used. 

Conclusion 

The days of the physical SMP architecture are numbered due to memory access 
becoming a major bottleneck as core counts rise.  Heterogeneous architectures demand 
different methods of communication between objects depending on whether they share 
a common address space (where data can be referenced), or are in separate address 
spaces (where data must be transferred between them). 

To avoid becoming locked into a particular topology it is essential that the same API is 
used for all communication between objects.  This allows the underlying runtime to 



select the best location to execute the object and the most efficient means of 
communication to use. 

This also means that because the application code makes no assumptions about 
topology, functionality can be partitioned between processes easily using a lightweight 
accretion operation.  The application code doesn’t change and the accretion description 
simply specifies which objects map to a particular process. 
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Multi-Core OO – Scale on Demand 
 

Abstract 

In this series we have considered how to develop an application to make best use of 
parallel hardware consisting of perhaps an unknown number of processors in an 
unknown topology (this information will be ‘automatically’ discovered at runtime).  We 
have already moved into a world where we can’t assume the processor count and it is 
also likely that ‘unknown topology’ will also soon become an issue.  The process for 
insulating applications from these uncertainties while retaining the OO abstraction is 
as follows: 

• Separate infrastructure from processing and describe it using an intuitive visual 
language 

• Use an asynchronous class equivalent to encapsulate and re-use concurrent 
infrastructural logic 

• Use the lightweight process of accretion to map the application to multiple 
processes for deployment 

This article considers the next challenge – dynamic reallocation of hardware at runtime.  
It will expand on the SVP abstraction and introduce the concept of ‘process colonies’ 
which provide applications with a real-time scale-on–demand capability.  It also 
provides a high-level overview of the distributed scheduler which is responsible for 
preemptively balancing the load across participating machines and managing their 
dynamic recruitment and retirement. 



What is Scale-on-Demand Processing? 

This abstraction augments the concept of a simple ‘process’ with an equivalent ‘colony’ 
of collaborating processes.  Colonization, like Accretion, is consistent with the SVP 
model of the world, and so application code is unaffected by this later-stage mapping. 

Process Colonies 
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The figure above shows a simple colony containing a single master process and an 
arbitrary number of slave processes (the general case can support applications with any 
number of ‘slave-able’ processes).  The translator uses this information to create two 
versions of the specified process (see Accretion in part 4).  The ‘master’ version will 
instantiate all of the specified definitive circuitry, whilst its ‘slave’ equivalent will only 
instantiate the functionality required to execute the circuitry that has been designated 
as ‘slave-able’ (able to be offloaded to slave processes). 

Designating a method as slave-able only involves setting one attribute; the method is 
subsequently displayed with a shaded interior, and non-colonized accretions and builds 
will ignore the setting.  Colonization is completely transparent to the application 
developer; some of its functionality is provided by generated code, and the rest is 
provided by the runtime scheduler. 

At runtime, each master process in the colony registers with the ‘registrar process’, 
which can be hosted by the application instance’s ‘root-master’ process, or a dedicated 
network server process (with a fixed address).  Any number of uniquely named 
application instances can execute on the same network (the instance name is passed to 
each process at runtime), but in practice, turn-key systems typically need predictable 
performance and so the multiple instance capability is primarily provided to allow 
engineers to share resources for development purposes.  This means that slave 
processes can be deployed on any available machine in the network and will 
automatically locate and connect-to their designated master instance. 



The colony editor allows developers to specify each master/slave colony’s resource 
requirements.  In some cases a given accreted process may wish to wait for a specific 
number, or minimum number of slaves to connect (typical for real-time applications), or 
in other cases, the application may wish to start execution with whatever is currently 
available (typical for off-line applications). 

Colony Scheduling 

The runtime’s distributed scheduler transparently manages a number of aspects of 
application execution; 

Slaves can be recruited and/or retired at any stage of execution, and the runtime will 
automatically ensure that slaves do not ‘exit’ until all of their allocated tasks are 
complete, and any definitive data has been redistributed to adjacent slaves (or the 
master itself). 

The scheduler will dynamically distribute the load across each participating slave.  In 
order to support distributed real-time applications, the scheduler addresses 
prioritization and preemption first, load balance second, and bandwidth optimization 
third. 

Network scope preemption is very difficult to implement in a topology independent 
manner, but is actually essential for applications like military sonar, and/or oil and gas 
survey systems, financial modeling can also be extremely time critical, because the 
ability to prioritize tasks at network scope can save vital seconds.   

Consider a signal processing system that needs to perform a determined number of 
FFTs at 1Hz, and assume that the network turn around time for this is 0.5 of a second.  
Now assume that in parallel with this, it also performs another set of smaller FFTs at 20 
Hz, and that the turnaround time for this is .02 of a second.   

Most standard mechanisms like scatter/gather do not execute preemptively, and so for 
at least 0.5 of a second, the higher frequency calculations would be stalled.  This could 
be addressed by executing two processes on the same machine, but context switching a 
large process at 20Hz would not have been practical for most of the Blueprint real-time 
systems undertaken to date.  This then leaves little choice but to map particular 
processes to particular machines/cores and thus lose the obvious benefit of optimal 
turnaround time for high priority processes (where every CPU/core in the system is 
recruited). 

In Blueprint applications network scope preemption is transparently achieved by 
keeping track of each slave’s prioritized job list.  The master scheduler will never send a 
priority ‘N’ job to a target that is fully loaded at priority ‘N’ (or above), if there is another 
target that has spare capacity at that priority.  This is essentially a distributed 
equivalent of SMP thread scheduling, and each slave scheduler is responsible for 
ensuring that it always has enough worker threads to provide preemption for each of its 
CPU cores. 

The task manager screenshots below show a sonar demonstrator with its master 
process running on a dual core laptop, and a single slave process executing on an 8-
way desktop.  There is no limit to the number of slave processes that could be recruited 
if required. 
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The runtime will automatically balance the load (within the constraints imposed by 
preemption), and the more and/or faster cores that a machine provides, the more 
work it will be given; this allows applications to utilize resources in a 
whatever/whenever (scale-on-demand) sense, rather than depending on dedicated 
clusters.  If a slave machine becomes busy/not-so-busy at any point (e.g. its virus 
checker is running/finished), the master scheduler will detect this and automatically 
adjust the slave machine's workload.   

In order to minimize communication bandwidth (within the above constraints), the 
scheduler adopts a ‘jobs-to-data’, rather than ‘data-to-jobs’ strategy.  For a job to be 
executed by a given slave process, the latter must have a copy of each of the job’s input 
arguments, as well as an up to date definitive copy of the job’s state (if required).  All 
else being equal, the scheduler will therefore allocate the job to whichever slave owns 
(or has cached) the most job-specific input/state data.   

This is a three stage process. If required, the first stage involves simultaneously 
selecting and instructing adjacent slaves to send copies of any outstanding data that 
are required by the target slave.  The second stage, involves the nominated slaves 
sending their data to the target slave.  Finally, when all data (and state) has arrived, the 
target slave will schedule the job for execution and cache/flush its outputs 
appropriately.  Cached data that is no longer referenced is automatically garbage 
collected. 



 

Scheduling latency is minimized by ‘job-overlapping’; the scheduler looks ahead, 
predicts load, and allocates a specified number of ‘buffer-able’ jobs to each slave; this 
allows processing and communication to be fully overlapped and in typical cases, hides 
the latency associated with the movement of data. 

What is its Application? 

The scale-on-demand capability provides a generic mechanism for migrating 
applications between platforms; the core-count, clock-speed, machine-count, 
communication protocol, and heterogeneity of target networks are all abstracted from 
the developer.  This means that resource calculations are less critical because ‘getting-
it-wrong’ doesn’t require a re-work; it just means recruiting more or fewer resources.   

As an illustration of this point; the UK Navy has had so many problems with ‘so-called’ 
scalable applications over the years, that they typically insist that the CPU load of a 
delivered system must not exceed 50% (to allow for expansion etc); this doubles 
hardware costs, heat emissions, footprint, power consumption, weight, single points of 
failure, spares support and so on.  Even with this precaution in place, a 50% load is 
just as likely to indicate poor load balance as available capacity, and this may not 
always be apparent until the contingency is actually required.  Because scale-on-
demand was demonstrable, this requirement was waived for their Surface Ship Torpedo 
Defense system (see CLiP case studies), and as a result, the 50% requirement was 
replaced by the less onerous requirement that the delivered rack must have the 
appropriate spare expansion slots (should they be required). 

In most cases scale-on-demand technology also means that applications can be 
developed, debugged, and maintained in a more convenient single-process configuration 
and then deployed across an appropriate distributed resource.  Choice and acquisition 
of target hardware can also be deferred until a later stage in the project life-cycle. 

The technology also has specific application in a number of sectors; 

Distributed Real-Time Applications (Military, Oil a nd Gas, Financial 
Modeling) 

Many of the early adopter projects to date have been distributed real-time applications 
(see case studies); in these cases the translator and runtime settings can be optimized 
for timeliness.  These have included surveillance systems, distributed interactive 



simulations, and a number of military and commercial sonar with both acoustic and 
seismic processing capability.   

In the real-time case, scale-on-demand capability can be used to optimize for fidelity 
(simulation and military sonar); adding processing power doesn’t necessarily ‘speed-up’ 
execution, instead it is utilized to improve the definition of the calculation.   

In day-to-day operation, military sonar systems can be required to replay and analyze 
previously logged data, occasionally run crew training sessions, and at the same time 
monitor for potential threats.  If a threat is detected, processing resources can be 
automatically withdrawn from the replay and training tasks and then rapidly re-
allocated to the more urgent task of tracking and classifying the identified threat(s).  
This is analogous to the biological response to ‘extreme cold’ where an individual’s 
resources are necessarily focused on the essential processes that are required for 
survival, at the expense of protecting an individual’s extremities.  When a successful 
Antarctic explorer returns to a sufficiently benign environment, resources are 
automatically returned to normal without conscious effort. 

Distributed Offline Applications (Military, Oil and  Gas, Financial, Scientific) 

In most cases however, additional CPU is used to reduce task turn around time.  This 
would be the case for some surveillance processing, financial modeling, and post-
processing of survey data.  Because resources can be dynamically recruited, equipment 
that is only in use during the day can be pressed into service out of office hours. 

Scale-on-demand is also useful for systems that have a periodic (typically 24-hour) 
demand cycle; the processing that a bank requires for example.  CPU resources can be 
added, removed, or just re-focused, in response to dynamically changing requirements. 

Deployment 

Having implemented, accreted, colonized and built an application; the end result is a 
set of process executables.  The final tool in the Blueprint chain (the Task Manager) 
provides a convenient means of deploying executables across the available network.  
Although primarily designed to simplify the management and administration of 
Blueprint applications, the task manager can be used to configure, deploy and monitor 
any parallel application. 

 



The tool provides a number of facilities that enable administrators and developers to 
describe the physical network, create and configure logical networks from the physical 
hardware, and then deploy application instances across one or more of the identified 
logical networks. 

The Parallel Deployment Language (PDL) will allow the task manager to take 
programmatic control of the application’s deployment.  As well as making sure that 
particular processes are ‘pinned’ to particular machines when necessary (usually due to 
some device or peripheral dependency), PDL will also allocate ‘floating’ processes to 
available machines, and do so in a manner that ensures that real-time processes do not 
come into conflict.  PDL can also be used to take appropriate action in the event of 
unscheduled process exits; typical action would be to kill and redeploy particular 
associated processes. 

Conclusion 

The process of taking a set of executable processes and describing how they should 
execute across a network is referred to as colonization.  Colonies consist of master 
processes and slave processes whereby the master orchestrates the behavior of the 
colony and the slaves perform the bulk of the processing work. 

The runtime scheduler employed by Blueprint makes decisions about the most efficient 
place to execute given tasks within a colony depending on the distribution of data and 
whether timeliness is most important (real-time systems) or the highest throughput is 
desired (off-line systems). 

In order to control the starting and stopping of processes across the network, a task 
manager application is employed.  This provides a means, through the Parallel 
Deployment Language (PDL) for the network administrator to ensure that appropriate 
actions are taken to ensure sufficient processing is allocated each application and to 
generate events in case of under-performance or failure. 

 

Further Reading 
 
For more detailed information see; 
http://www.connectivelogic.co.uk/devzone.asp 
 
For a list of some of the applications to date see; 
http://www.connectivelogic.co.uk/solutions.asp 
 
For a comparison between object-oriented and component-oriented paradigms see; 
http://en.wikipedia.org/wiki/Component_(software)#Software_component 
 


