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1 Introduction 
The term ‘holographic processing’ refers to a Multiple Instruction Multiple Data (MIMD) technique that 
is primarily aimed at multi-core processing architectures. The name derives from the fact that most of 
the application functionality can be executed by most of the threads, and much of the data is optimally 
distributed (only copied when necessary). This means that individual machines can be recruited 
and/or retired at any stage of execution and in particular the application can be executed as a single 
thread of execution (although the real-time case may require additional threads in order to execute 
preemptively). Holograms can be broken into pieces, but all the information is preserved in each 
piece, and one of the main goals of the technology described in this note is to provide a similar 
resilience for distributed software applications (scale on demand). 

This means that the application need not know (or care) how many CPUs (or even machines) are 
available at any one time, indeed the number could change at any stage of execution. As more CPUs 
are recruited the application can run faster, or in some cases, the fidelity of the calculation can 
increase (application design decision), if they are retired then the opposite applies. From a technical 
perspective, the concept of single machine SMP thread pools exploited by OpenMP and similar 
technologies is generalized to heterogeneous networks of multi-core processors but in a way that 
hides all of this from the application. The application sees the whole network as a single virtual 
process (SVP) with data accessed by reference, and tasks executing preemptively. In the general 
case, an application may contain multiple SVPs (each root process is distributed across an arbitrary 
number of machines). 

 

 
This technique therefore requires a different programming approach as well as specific runtime 
capability (synchronization, scheduling etc – see Connective Logic). In particular, engineers need to 
think in parallel terms rather than sequentially. There are a number of issues that arise as a result of 
concurrent execution and these include; avoiding cases where two components update the same data 
simultaneously, making sure that components are not executed until their inputs are ready, launching 
one or more components when their shared inputs do become available, and last but not least 
providing an equivalent of automatic stack data so that data objects are relinquished when they are 
no longer referenced (happens automatically when a sequential program returns from a function that 
instantiates objects on its stack).  But in this case, data objects are cached across the network and so 
when no longer referenced, the definitive and all cached instances need to be ‘freed’. 

http://en.wikipedia.org/wiki/MIMD�
http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
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Equally importantly the runtime that provides these services must not use too many machine cycles 
otherwise scheduling overhead could become a serious drain on resources (limiting potential 
granularity). Also, for the general case of real-time execution, object deletion (garbage collection) has 
to be deterministic. If the solution is going to work in the general case of real-time systems, then 
preemption also needs to work at network scope rather than just individual machine scope. 

Crucially, holographic systems (as defined above) make extensive re-use of the logic that their 
sequential equivalents provide and so migration from an existing application to a holographic 
equivalent does not involve extensive porting from one language to another (most code remains 
unchanged) and typically, the exploitation of multi-core is restricted to very course grain high-level 
modification, and as a consequence, very few engineers need to consider anything other than 
business as usual. As an aside, the approach suggests that multi-core only needs to create a new 
specialization rather than requiring everybody to re-learn their trade.  This means that domain experts 
can develop parallel applications without needing to reason about threads, locks, semaphores, or any 
other low level synchronization issues. 

However, the holographic execution of an entire application is not appropriate in all cases and so 
there also needs to be a means of mapping application functionality to one or more sub-systems and 
then optionally executing each of these holographically. The important issue is that it is necessary to 
distribute the functionality arbitrarily without needing to re-write any of the application’s code; 
otherwise the application would be tied to a given platform topology and would not be portable. Also, it 
is often extremely convenient to be able to execute the whole system on a single CPU (as a single 
process) for development and maintenance purposes (greatly simplifies the logistics of debugging 
etc). The process of mapping the whole application to one or more executable processes is referred 
to as accretion, and typically most projects will have many accretions; some for debugging in slow 
time, some for debugging in real time, and of course the definitive release version. The goal is that the 
application must not change, only the build (see Accretion and Colonization). 

In order to implement this higher level abstraction, it is necessary to consider exactly how application 
functionality is going to be scheduled by two or more processor cores (concurrent execution) and how 
this can be done without knowing (or caring) about the underlying processor architecture or (for 
distributed systems) topology.  

It is also worth noting that this article aims to provide a high level overview of how holographic 
processing can be implemented, and is not necessary reading for engineers who simply want to use 
CLIP. However, as with most software technologies, an understanding of the underlying 
implementation is often useful when considering optimal use of the available functionality. 

The connective logic technical article introduces a visual symbolism (CDL) for describing the 
coordination of event flow and in many of the examples that follow this is used in order to clarify the 
points being made. It is therefore recommended that the connective logic article should be read 
before this one. 

http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
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2 Background 
The Connective Logic Infrastructure Programming (CLIP) technology has been in development since 
1993 and the current implementation began in 1995.  The Concurrent Object Runtime Environment 
CORE (part of the CLIP technology) is an implementation of a kernel with a ‘holographic’ capability as 
described above, and has been in continuous commercial development and use since that time.  

In earlier times it was used as a middleware, but more recently, with the development of the 
Concurrent Description Language (CDL) translator, it is even more effectively treated as a Visual 
Programming Language (VPL) runtime. CLIP was initially developed to address general concurrency 
(multiple threads and/or multiple processes) but in recent times its principal use has been with multi-
core platforms (or networks of multi-core machines). 

During this time the holographic processing model has been used for a wide range of projects that 
have ranged from CLIP’s own development toolset, up to enterprise scale projects in areas like 
acoustics, seismology, simulation and surveillance. In recent times it has been used for a number of 
mission critical systems including the Royal Navy’s Surface Ship Torpedo Defense system (SSTD), 
Unmanned Air Vehicles (WatchKeeper) and Synthetic Aperture Sonar (Artemus).  

CORE is mature when compared to more recently developed solutions that address the problems 
raised by multi-core. Typical application sectors include military, aerospace, oil and gas, medical, 
surveillance and financial; but it has far more general application than this. Its successful use for 
distributed interactive military simulations suggests that it could be applicable to video games 
(especially multi-player implementations) and its inherent scalability makes it a candidate for general 
High Performance Computing (already demonstrated for finite difference time domain applications).  
See Case Studies. 

http://www.connectivelogic.co.uk/cases.aspx�
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3 Explanation of Terms 
The following terms are used throughout this note. 

Connective logic refers to a programming paradigm which is expanded in the accompanying 
document to this one. For full appreciation of this note, we recommend reading the connective logic 
document first. 

In most contexts the term blocking refers to the case where a CLIP Method (see below) is unable to 
execute because either its inputs are not yet available, or it cannot yet get space for its output. In 
practice, the runtime worker threads will only block in the true sense if the total concurrency of the 
executing process falls below the number of worker threads (or logic specifically dictates that they 
should). 

By default CORE creates one worker thread for each CPU core, and does so for each priority that 
methods are declared to execute at (so for non real-time applications this will usually be one). When 
their inputs and outputs are available, they are scheduled for execution by system owned worker 
threads, and in the general case these may actually be running on another machine. Passing a job for 
execution to another machine only involves sending its inputs (if the target doesn’t already have 
them), and a 32bit identifier telling it which method to pass the arguments to (all processes are linked 
with all executable tasks so no code needs to be sent). 

CLIP Methods are a lightweight alternative to conventional operating system threads and in practice 
almost all concurrent execution is achieved through these objects. Conventional threads are 
supported but they are only generally required for certain types of I/O where control can block outside 
of CLIP in the true sense. Although methods are almost entirely equivalent to threads, their ‘blocking’ 
does not usually result in workers ‘blocking’ in the conventional sense, and so their use can greatly 
reduce context switching overhead and considerably reduce total application stack requirements; this 
allows for extremely fine execution granularity. The fact that they are actually executed by workers is 
completely transparent to the application developer who will usually see them as a straightforward 
fully preemptive replacement for threads. They are in no way related to ‘fibers' 

Scheduling latency is an issue that affects many parallel applications. It refers to the situation where 
a component is logically schedulable (all its inputs and outputs are available) but because of sub-
optimal implementation it cannot be scheduled. There are a number of examples of this in the 
connective logic document. It is not the same thing as Amdahl’s effect (which results from a limitation 
of the algorithm being parallelized) but it has the same effect and prevents applications from scaling 
to their best theoretical limit. It can easily be mistaken for Amdahl’s but (by definition) can be 
remedied by redesign of the application. 

Leaf Providers are objects that provide events, but do not consume them. An example would be a 
transient store which provides two types of event; a ‘ready for write’, and a ‘ready for read’. 

Root Consumers are objects that consume events but do not provide them. An example would be a 
thread, a method or a GUI call-back (see below). 

Developing CLIP applications is a multi-stage process.  The first stage is to create an application 
which makes no assumption about topology (assumes a single virtual process).  The second stage is 
to statically map that functionality to one or more executable ‘processes’.  This is referred to as 
Accretion (see below) and is totally separate from application development.  In practice most projects 
will have a number of different accretions; a single process accretion for debugging/maintenance, and 
various other accretions for various targets.  Finally, each of these ‘accretions’ can be distributed to 
Colonies of dynamically scheduled ‘slave’ processes. 

http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
http://en.wikipedia.org/wiki/Fiber_%28computer_science%29�
http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
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4 The Problems Addressed 
The reason for considering an alternative approach to concurrent systems stems from a number of 
problems that make the development of parallel programs very difficult in general, and given that 
processor manufacturers are universally moving to multi-core, this means that these issues now have 
a much higher profile.  

It is generally agreed that threads, locks, and semaphores are equivalent to assembly language 
components in terms of their level of abstraction and although some specific problem areas have 
workable solutions (e.g. OpenMP and MPI for data parallel applications), the general case of irregular 
concurrency is arguably unresolved, and in particular, code that uses conventional techniques 
(especially locks) doesn’t compose well and so it is very difficult to build large systems and/or re-use 
components.  

This section considers what are believed to be some of the fundamental problems with conventional 
parallel programming approaches and explains how these are addressed by the CLIP technology. 

4.1 Inter-thread Communication 
This is one of the most fundamental issues in any concurrent system, and the reason it is an issue is 
that if two communicating threads are in the same address space then communication by reference is 
the simplest and most efficient means of exchanging data, but if they are in disparate address spaces 
(e.g. different machines) then this cannot work and so data has to be moved using a more 
complicated message-passing type scheme. And the problem that this then presents is portability. 
Unless we go for a lowest common denominator approach and make all inter-thread communication 
move data (very inefficient use of multi-core technology) then our application could be locked into a 
particular topology (e.g. 8 machines with 4 cores each).  

Over the coming years core-counts are predicted to double every 18 months or so, from the current 
norm of 2 or 4, up to literally hundreds; and this means that cluster topologies will be likely to change 
as fewer and fewer machines are actually required (unless problem sizes exactly scale with core-
count which is very unlikely).  Once core-counts pass 32, many experts predict that the symmetric 
shared memory (SMP) model will have to change and this will only exacerbate the problem. 

Applications that assume a particular topology will probably need continual maintenance. And 
addressing this is not as simple as it seems. If an application needed to run within a shared memory 
architecture it would probably want to use something like OpenMP and communicate by reference, 
but if it wants to schedule across a network it is more likely to want to use a message passing 
paradigm such as that provided by MPI. It is also possible that platforms like the IBM Cell may be the 
future and unless this issue is addressed, communication could become even more topology specific.  

In order to write truly portable programs (rather than just O/S independent ones) we therefore need to 
abstract the platform topology in such a way that if two threads find themselves in the same address 
space at runtime, they will use reference, but if they find themselves in different memory spaces the 
data can be transparently moved without the application needing to do anything specific. This is a 
fundamental feature of holographic processing and the same code will run on any number of 
disparate SMP sub-systems. This is how the same application can be ‘accreted’ to any number of 
different topologies without the need to change the application itself. 

The first thing that is required is an Application Programmer’s Interface (API) that will work in both 
cases (shared and disparate memory), and again this is not as easy as it seems. The obvious 
question is why is it not possible to just use something like a Berkley socket interface, and in the case 
that the runtime detects that the recipient is in the same machine, just pass a reference rather than 
the data itself. This would seem to be a minor change to the API (the recipient would be given the 
address, rather than providing it) and all the runtime would need to do would be to pass the reference 
in the shared memory case; but move the data, create a buffer and return its address in the disparate 
case. 

This almost works but doesn’t address another very important issue; data life-cycles. If the software 
passes a reference to an automatic object that is created on the stack, then the executing thread 
cannot return from the providing function until the recipient has finished with the data and the simple 
API above doesn’t have a way of letting the provider know when the consumer has finished accessing 
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the data. Even if the API is now modified so that the consumer is obliged to inform the provider that 
they have finished with the data, there is still the problem that the provider is gratuitously blocked, 
waiting for a response, when it could probably have continued to do some more useful work.  

If a persistent storage scheme is used, rather than stack, then it solves the problem of not being able 
to return but the provider still needs to know that the consumer has finished with the data otherwise it 
could over-write an earlier message, and if it has returned then there needs to be some way of 
dealing with this that isn’t synchronous (the provider should never need to wait for the consumer). 

The simplest solution to this problem is to use a producer/consumer model and indeed this technique 
is commonly adopted by multi-threaded systems. So the communication code ends up looking 
something like; 

Writer Code 

buff = waitOpenWrite( store_id );  // Wait for writeable buffer ref 
populate( buff );                  // Populate buffer ref 
close( store_id);                  // Close and unblock reader 

 

Reader Code 

buff = waitOpenRead( store_id );   // Wait for readable buffer ref 
useBuff( buff );                   // Use the input 
close( store_id );                 // Close and unblock writer 

 

Shared buffers can then be static (created once at runtime) or dynamic (providers allocate and 
consumers delete). CLIP provides this functionality through an object that is referred to as a transient 
store. The number of buffers (store depth) is configurable and writers are blocked if the store is full, 
and readers are blocked if the store is empty.  

This ‘blocking’ flow control is transparently implemented between machines and so a thread reading 
from a store on one machine can unblock a thread waiting to write on another machine (and vice 
versa). Static, dynamic and other allocation schemes are also configurable. The above scheme can 
use reference passing if the threads are in the same address space, but transparently move the data 
if they are not.  

The CDL equivalent of the above code is shown below. Note that the method code does not need to 
perform the open/close code because this is now performed by the circuitry (generated by the 
translator). So in this case, the write method would just consist of the developer supplied ‘populate’ 
call, and the read method would just consist of the ‘useBuff’ call. 

 
 

But there is another problem to solve, and this is the case that arises when one provider has many 
consumers, and this introduces the concept of distribution (buffers need to be available until their last 
consumer has finished with them). This can be solved by a publish/subscribe type mechanism and 
CLIP provides this through the ‘distributor’ object. 
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In this case, each buffer remains valid until all three methods have used it, and when the last method 
returns, the buffer becomes re-write-able and allows the ‘writing’ method to re-execute. 

4.2 Coordination and Synchronization 
However, the provision of stores and distributors still doesn’t solve the general irregular problem. Most 
functions have more than one input and it would be a very onerous constraint if the calculation of 
these inputs couldn’t be scheduled in parallel. So consider the case of three threads A, B and C 
calculating three values ‘a’, ‘b’ and ‘c’ and then a fourth thread D, waiting until all three have 
completed and then calculating a fourth value ‘d’ (using ‘a’, ‘b’ and ‘c’). The operation of waiting for 
multiple inputs is referred to as ‘collection’. Each writer therefore executes similar code; 

Writer Code (Threads A, B and C) 
buffA = waitOpenWrite( storeA );  // Open store for write (e.g. A) 
populate( buffA );                // Populate respective buffer 
close( storeA);                   // Close respective store 

 

The reader executes the following; 

Reader Code (Thread D) 
buffA = waitOpenRead( storeA );   // Wait for buffer in store A 
buffB = waitOpenRead( storeB );   // Wait for buffer in store B 
buffC = waitOpenRead( storeC );   // Wait for buffer in store C 
buffD = waitOpenWrite( storeD );  // Wait for buffer in store D 
PopulateD( buffA, buffB, buffC, buffD );  // Populate output 
close( storeA );                  // Close and unblock writer A 
close( storeB );                  // Close and unblock writer B 
close( storeC );                  // Close and unblock writer C 
close( storeD );                  // Close buffer D 

 

This example introduces the compound method object which is identified by two consuming 
connection points. This symbol is equivalent to a method that collects both of its consumed events 
before executing and is provided as a form of symbolism ‘shorthand’ (see below). 
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The CDL equivalent therefore becomes; 

 
 

But now consider the case where two threads; D and E, are both required to execute with the outputs 
from the first three threads A, B, and C. Provided the application has a publish/subscribe style 
producer/consumer (store and distributor) then the problem can still be solved fairly easily.  

Two CDL descriptions are shown below. The first reflects a typical thread solution where D and E 
would both collect from distributed stores, and the second shows an alternative CDL solution where 
collection occurs before distribution. 

 
The solution above involves both collectors connecting to all three distributors and the resulting 
‘crossed-lines’ could be confusing. Whilst this could be addressed through the use of conduits and/or 
labels, the solution below reverses the distribution and collection operations (leading to faster 
execution) and illustrates the fact that CDL operators are compose-able. 

http://www.connectivelogic.co.uk/holoproc.asp�
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However, in order to have a completely generic solution, it is necessary to consider the case where a 
given input could be provided by one of a number of producers, and in particular it needs to work for 
the case that the actual provider cannot be predicted (equivalent to a UNIX ‘select’ or Windows ‘wait 
for multiple objects’ call). In CLIP terminology this operation is referred to as ‘multiplexing’. 

Suppose thread C will execute when its two inputs ‘a’ and ‘b’ are ready, but ‘a’ could be calculated by 
threads ‘A1’ or ‘A2’ (and we don’t know or care which). 

Pseudo-code for thread C could look something like; 

// Wait for event from either store A1 or store A2 
buffA = waitOpenMultipleRead( storeA1, storeA2 ); 
 
// Wait for event from store B 
buffA = waitOpenRead( storeB ); 
 
// Open C for write 
buffC = waitOpenWrite( storeC ); 
 
// Now calculate C from A and B 
PopulateC( buffA, buffB, buffC ); 
 
// Now close whichever store was opened 
closeMultiple( storeA1, storeA2 ); 
 
// Close remaining stores 
close( storeB ); 
close( storeC ); 

 

The CDL equivalent would look like; 
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Finally, in order to solve the most general problems an exclusion mechanism is also required in order 
to prevent two or more concurrently executing threads from trying to access mutually shared data in 
an inconsistent manner (data races). More importantly, there needs to be a means of ensuring that 
exclusion can be implemented without causing deadly embraces and other deadlocks (this is dealt 
with in more detail in the connective logic document). 

So in summary; the solution requires a number of basic operations and objects. These include; 

1. Transient data stores to generalize the concept of ‘automatic’ (stack) data. These must be 
logically visible from any machine, and their buffers must be automatically invalidated when 
no longer referenced (from any machine). This requires a global memory management 
scheme. 

2. The notion of distribution; so that events (especially data updates) can be passed to an 
arbitrary number of consumers (on any machine). 

3. Collection, so that consumers can wait until all of their inputs are ready (from any machine 
and in any order). 

4. Multiplexing, so that consumers can wait for events from any number of potential providers 
(on any machine and in any order) 

5. Exclusion, so that two or more threads are prevented from accidentally updating data in an 
inconsistent manner (regardless of machine localities) 

As will become apparent later, distribution, collection, multiplexing and exclusion need to be 
compose-able. So it needs to be possible for example to collect distributed collections of multiplexed 
excluded data events; and so on.  

It will also become apparent that the objects that implement these operations must be passive (not 
require any hidden threads in order to execute). So for example when a request is made to a collector 
it needs to request all of the events that it requires and then record each one that is available at that 
time. After this time, each provider that delivers an additional event to the collector needs to check 
and see if it is the special provider that completes the sequence, and if so, needs to pass all of the 
collected events (as a single compound event) to whichever consumer is requesting from the collector 
(or queue it if no consumer has requested yet).  

Furthermore it needs to happen asynchronously; so that in the distributed processing case, 
communications and processing can be over-lapped (otherwise latencies could become problematic). 
This also needs to happen across machines and has to be transparent to the application.  

As an aside, whilst the operations described are complex in conventional terms; from a connective 
logic perspective all that the application developer actually needs to do is to specify the existence and 
inter-connectivity of a few fairly simple event operators; and experience to date suggests that 
engineers find it far easier to specify connectivity visually, rather than through a sequential text API 
(and they have had the choice). In fact the need for compose-ability etc makes the text API awkward, 
and most of the code that is now generated from diagrams is actually the creation and connection of 
objects (difficult to manage without a visual sketch of some sort). 

http://devzone.connectivelogic.co.uk/docs/connectivelogic.pdf�
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4.3 Threading 
An obvious problem with the scheme as described so far is that it is likely to lead to arbitrarily large 
numbers of threads (especially for data-parallel applications) and worse than this; most of these will 
be blocked waiting for their collecting, multiplexing and so on; to complete. The operation of collection 
(waiting for multiple events) is also likely to incur multiple context-switching in order to complete and 
allow each thread to execute. 

However, given that each thread is waiting for a sequence of operations to complete; there is actually 
no reason why each thread’s blocking pattern (their complete sequence) couldn’t actually be fed into 
one single multiplexor so that in actual fact the entire application could be executed by a pool of 
system owned worker threads (another reason that the basic operations need to be compose-able). 

Once this can be achieved then at local SMP scope anyway, all that is required is a number of system 
owned worker threads that compete with each other to extract tasks (completed sequences of 
operations) and execute them. 

The diagram below shows four CDL methods, each of which will execute when their inputs and 
outputs are available. 

 
 

Below is a logical equivalent where the four compound method providers are fed into a single 
multiplexor, and worker threads compete to retrieve events from the multiplexor. In the CORE runtime 
case, each event is tagged with the multiplexor link number and so each worker can determine the 
appropriate method code to execute. Since every method in the application can be multiplexed into a 
single object, the application can therefore be executed by any number of worker threads (typically 
one per CPU).  
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This is the basis of the event manager described in a later section and is probably most easily 
understood by considering the CDL diagram above. This means that the bubble objects in the 
diagrams (CDL methods) are not threads at all but are in fact objects more akin to call-backs. It also 
means that although they may appear to be ‘blocked’ whilst collecting their inputs, in fact nothing is 
blocked (unless there are less executable tasks than workers), there is a considerably reduced 
context switching overhead, and each method only requires a few hundred bytes of storage rather 
than the enormous requirement that would result from large numbers of thread stacks. The reductions 
in context switching reduce the scheduling overhead and typically allow for finer grain concurrency. 

In general there is no point in creating more than ‘N’ workers; where ‘N’ is the number of thread cores 
available to the executing process, because at a given priority there is no advantage to context 
switching to an adjacent task (unless the application is real-time). So at initialization, the runtime 
makes a call to determine the number of cores available and uses this to create its thread pool. Since 
this is transparent to the application, holographic applications need have no knowledge of their host’s 
core-count and will simply scale to whatever platform they are executed on. 

Most applications to date have required real-time preemptive execution and this can be achieved by 
assigning each CDL method a priority (as with threads). At initialization time, the runtime will 
transparently create a multiplexor and thread pool at each utilized priority. So the (default) total 
number of worker threads is PxN where P is the number of priority levels used by the application 
(seldom more than 3 or 4) and ‘N’ is the number of cores available to the executing process. Note that 
in the multiple machine case, the root master directs a distributed scheduler that ensures that the 
global thread pool (all workers in the distributed colony) execute preemptively. 

4.4 Blocked Workers 
As explained earlier, methods do not generally execute until all of their inputs and outputs are 
available, and this means that in general they do not need to block until completion. This means that 
all methods that share a given priority can usually be executed by a single worker thread (if required) 
and this has the benefit of repeatable execution, which in turn means that applications are far easier 
to debug. Typically, applications are first developed with a single thread, then multiple threads, and 
finally (if required); fully distributed. 

However, in the special case that a worker-thread blocks on an operation that is a scheduling pre-
requisite of adjacent workers, it is possible for the whole system to block with what is referred to as a 
‘log-jam’. 
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Consider the example above. If the method produces an arbitrary number of outputs each time it 
executes, then it is not possible to open all the outputs prior to execution, and it is therefore possible 
that the method could fill the output store and block. If this were executing with a single thread then 
the situation would be unrecoverable because there would be no available worker to read data out of 
the store and unblock the writer. This problem can be solved in several ways; 

1. Ensure that the system has more workers than block-able methods. This solves the problem, 
but means that the application cannot be debugged with a single thread. It also means that 
whilst workers are blocked, the system may have less runnable threads than CPUs and this 
may affect performance. 

2. Let the system detect potential blocks and spawn threads automatically. This is a safe 
scheme, is transparent to the application, and is the scheme adopted by the CORE runtime. 

What this means in practice; is that only in the case that all method workers block outside of the 
runtime, can a log-jam occur. In order to address this pathological case, CORE therefore allows 
methods to be identified as having their own thread of execution. In practice, the concept of collection 
means that it is seldom necessary for workers to block for anything other than the purpose of I/O (e.g. 
reading from a socket). 

4.5 Event Propagation 
Although much of the detail has been skipped over, it should be apparent that event based execution 
can provide a concurrent alternative to conventional sequential stack based execution and that 
generality for data and task parallelism can be largely achieved by the provision of half a dozen or so 
arbitrarily compose-able event operations. Typically, the top level of the application will execute using 
an event based paradigm, but the lower level (finer grain) functionality remains sequential and stack-
based. 

When developing CLIP applications, one of the most important design tasks is to decide how far down 
to take the event based approach (CDL circuitry). Granularity is usually limited by the fact that event 
management is more expensive (in terms of CPU usage) than stack based execution and so there 
comes a point where the liberation of additional concurrency no longer justifies the event 
management overhead. So keeping the cost of event propagation low is absolutely essential and this 
section provides a (simplified) overview of how event propagation is implemented in the CORE 
runtime. 

In most cases, there is a three stage operation; request, reply, rescind; and in almost all cases these 
simply involve unlinking tokens from one queue and re-linking them into another. Most event 
propagations also require one lock and one unlock operation but these are seldom contended.  

Typically, if a consumer request cannot be satisfied, then the consumer leaves a token (referred to as 
a wait-frame), but does not block the executing thread (considerably reducing context switching). 
When (at some time in the future) the provider does have the requested event, it unlinks the wait-
frame, points the wait-frame at the event, and then sends the populated wait-frame back down the 
consumer tree (this is the reply phase of the cycle).  Eventually it reaches the root of the tree and if 
there is a waiting worker thread then the event is passed to the thread, which is then unblocked.  If 
there are no workers waiting, then the event is queued for later processing by the next available 
worker. 
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Finally, when the worker has finished processing the event, it is returned to the object that provided it 
(and so on all the way back through the event tree). This is the rescind phase of the cycle, and once 
completed the system is back to the quiescent state that it was in before the earlier request, and is 
then ready to receive another request. 

Note that the precise behavior of each object (distributor, collector, store etc) will be specific to their 
type and this will reflect the particular operation that the object performs. Although it is an advanced 
topic; most objects have a configurable reentrancy attribute that allows multiple request cycles to be 
active in parallel. So this might mean for example, that multiple consumers could be processing 
events retrieved from a multiplexor simultaneously.  

In fact, as discussed earlier, CDL methods are implemented by multiplexing all method event trees, 
and doing so with a reentrancy of ‘N’ where ‘N’ is the number of worker threads (by default ‘N’ is the 
number of CPU cores available to the process). Also note that the term ‘event trees’ derives from the 
fact that in the general case consumers can collect collections and distributors can distribute to 
distributors; in fact as mentioned earlier, all event operations are necessarily compose-able.   

The event model (as opposed to typical data-flow models) means that data only needs to be moved if 
the producer/consumer pair are in disparate memory spaces, and this considerably improves 
performance for many applications.  Gratuitously moving data around main store is an expensive high 
latency operation particularly when data is shared by multiple consumers; each of which requires a 
separate gratuitous copy. 

Event management may not be easy to follow from the description above and is probably best 
illustrated by example. Consider the case of two threads (methods will be considered later); the first 
writes to a transient store, and the second reads from the same store. In this example, the store is 
assumed to have a buffer depth of two (double-buffered). Below is the writer and reader code; 

 

Writer Code 

buff = waitOpenWrite( store_id );  // Wait for writeable buffer ref 
populate( buff );                  // Populate buffer ref 
close( store_id);                  // Close and unblock reader 

 

Reader Code 

buff = waitOpenRead( store_id );   // Wait for readable buffer ref 
useBuff( buff );                   // Use the input 
close( store_id );                 // Close and unblock writer 

 

Essentially, a transient store consists of four queues and some additional state that doesn’t concern 
this example. 

 
In practice, it is not possible to determine the order in which the write and read threads become 
runnable (in the multi-core case this may be simultaneous) and the exchange must work in all cases. 
This can be considered as a four stage operation; 
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1. The writing thread issues a write request to the store. If a buffer is available it is unlinked from 
the writeable buffer queue and its address returned to the writing thread, which can then 
continue to execute. If no buffer is available, then a wait-frame that references the executing 
thread is added to the blocked writer queue. In this example, a thread that could not retrieve a 
buffer would block in the conventional sense (this will not be the case for methods). 

2. The reading thread issues a read request to the store. Again, if a buffer is available it is 
unlinked and its address returned to the reading thread which can also continue to execute. If 
no buffer is available then a wait frame is queued and the executing thread blocked. 

3. When thread ‘A’ has completed writing its data to the buffer it ‘closes’ (rescinding the buffer). 
If the reading thread has already requested (and its wait-frame is queued) then the wait-frame 
is assigned a reference to the buffer (which is now readable) and in this case the reading 
thread is unblocked and executes. If however, the reading thread does not yet have any 
outstanding requests, then the buffer (now readable) is queued in the readable buffer queue 
and this means that when the reading thread next requests, it will have an available buffer 
(and its request will immediately succeed). 

4. When the reading thread has completed reading its data from the buffer it also ‘closes’. But in 
this case; If the writing thread is queued (waiting to write) it will be passed the ‘now-writeable’ 
buffer and unblocked; otherwise the writeable buffer will be queued so that the writing 
thread’s next write attempt will succeed without blocking. 

In this example (two threads and two buffers); both read and write threads could execute in parallel, 
with the read thread processing data from iteration ‘n’ whilst the write thread is actively writing the next 
‘n+1’ iteration. 

In practice, it would be very unusual for a CLIP application to use threads to perform the kind of 
read/write construct described above; it would be far more likely to use CDL methods. As explained 
earlier, these are essentially call-back functions that do not need to block in the conventional sense, 
and are implemented through process wide multiplexors (one for each active priority), so effectively 
the example above is actually realized using the following circuitry; 

 
Before considering how this example would work, it is worth considering how multiplexors themselves 
work. The diagram below shows the structure of a multiplexor. In this case, each link owns one or 
more wait frames that it uses to request events from its connected provider in the manner described 
earlier. It also has a queue for ‘already-retrieved’ events that have yet to be consumed, and a queue 
for ‘blocked-consumers’ that are ‘as-yet’ unable to retrieve events from the multiplexor (clearly they 
cannot both be populated and so in practice only one queue is required). The reentrancy is ‘N’ where 
this is the number of worker threads, and in this case, links are ‘requested-from’ using a round robin 
(as opposed to prioritized) ordering scheme. 
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Any consuming object can retrieve events from a multiplexor, and the process involves the following 
stages; 

1. The consumer requests an event using a wait-frame. If the multiplexor’s ‘already-retrieved’ 
queue contains an event then the consumer unlinks it, references it from the wait-frame, and 
then processes the populated wait-frame (queues it locally or passes it further down the 
consumer chain). 

2. If the multiplexor does not contain any ‘already-retrieved’ events then the consumer must 
traverse each link until it either retrieves an event, or reaches a situation where all links are 
blocked. In the latter case, the consumer adds its wait-frame into the ‘blocked-consumers’ 
queue and returns a blocked status (but crucially does not block the executing thread in the 
conventional sense). In the former case (where an event is retrieved on a given link), the wait-
frame is assigned a reference to it, and the consumer then processes the populated wait 
frame. 

So the request stage of the cycle may or may not successfully return an event, but does not block the 
executing thread (still free to continue requests lower in the tree and/or execute any runnable 
methods).  

However, the multiplexor’s request stage typically lodges a number of wait-frames (those owned by 
the links) that are now queued on their providers (objects connected to each of the multiplexor’s 
consuming links). The next stage is therefore the reply stage and this is activated when a link’s 
provider that was not available during the request cycle, subsequently becomes available.  

1. The provider will find the multiplexor link’s wait frame in its ‘blocked-consumer’s’ queue and 
so it needs to unlink the wait-frame, assign a reference to the provided event, and then pass 
the populated wait-frame back to the multiplexor link that requested it. 

2. If the multiplexor owning the link has wait-frames in its own ‘blocked-consumers’ queue then 
the first one is unlinked, a reference to the link’s wait-frame (which is referencing its providing 
event) is assigned, and the populated consumer’s wait-frame is then passed to the 
multiplexors consumer.  

3. This continues all the way down the event tree until an object is reached that does not have a 
consumer, and at this point the accumulated event tree is linked into the objects ‘already-
retrieved’ queue for later consumption. 

4. In the special case that an actual blocked thread is the root consumer, then the event is 
referenced in the thread’s wait-frame, and the thread unblocked in the literal sense (so it 
becomes runnable in an operating system sense and wakes up with a successfully retrieved 
event). 

The net result of the request/reply cycle is the retrieval of an ‘open’ event tree. Once, this has been 
processed by its root consumer, the event tree can be ‘closed’ (the rescind stage of the cycle). This is 
typically executed automatically when control returns from user method code and in the case of the 
multiplexor, involves the following stages. 

1. The first task is to close the event that was provided to the closing link. This sets off a 
recursive chain of close operations that means that leaf providers are actually closed first. 
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2. If the multiplexor has any ‘blocked-consumers’ then the request cycle is repeated for the 
closing link and if successful, the first blocked consumer in the queue is passed the event. 

3. If the multiplexor has no ‘blocked-consumers’ then the link wait-frame is marked as quiescent 
so that subsequent requests to the multiplexor can launch a request on the closing link. 

It should now be clearer how the example would work. In the explanation that follows, the ‘writing’ 
method is connected to link 0 and the ‘reading’ method to link 1; two worker threads are assumed. 
The exact order of events will depend upon timing, but the following would be typical; 

 

1. The first worker to execute requests an event from the multiplexor. This causes a request to 
be issued on link 0 which requests a write to the store. First time in, the store will have two 
write-able buffers available so the first is unlinked and propagated back to the worker that can 
then start executing. As an aside, the retrieved link number (in this case 0) is used by the 
worker to index into a table of call-back addresses and in this case the worker will therefore 
execute the ‘writing’ method code. 

2. The second worker now executes (in parallel if there are two or more cores) and first tries to 
retrieve on link 1 (the multiplexor in this case uses a round-robin scheme). Assuming that the 
first worker is still writing, there will be no read-able buffers populated yet, so link 1’s wait 
frame is queued in the store’s blocked reader queue. 

3. The second worker now continues to the next link (wraps round to link 0). What happens next 
depends on the reentrancy assigned by the user to the ‘writing’ method. If it has reentrancy 
greater than one, then the multiplexor will issue a second request on link 0 and acquire a 
second write-able buffer. However, for the purposes of this discussion, it is assumed that the 
‘writing’ method is not re-entrant and so the multiplexor will not issue a request and the 
second worker will be added to the multiplexor’s ‘blocked-waiter’ queue and will then block in 
the conventional sense. 

4. At some point, the ‘writing’ method will complete execution (having populated the write-able 
buffer) and return from the user code associated with the method. The worker that executed 
the write will now ‘close’ its multiplexor event. This then closes the store that was opened for 
write as described earlier. In this case, the store will have a blocked reader (from the second 
workers earlier request) and so the now read-able buffer will be passed to the waiter and this 
will propagate down the event tree until it reaches the blocked second worker. The second 
worker is assigned the event tree (which contains a multiplexor wait frame and a read-able 
buffer) and is unblocked. The second worker now begins execution of the ‘reading’ method 
code. 

5. Having completed its first task, the first worker now requests another event from the 
multiplexor and in this case will retrieve a second writeable buffer (the store is double-
buffered in this example). It now executes the writing method for a second iteration and at this 
stage both worker threads are executing in parallel; the first is writing the second iteration, 
and second is processing the first iteration. 

6. What happens next will depend upon which method completes next, but it should hopefully be 
clear that the resulting execution is exactly the same as it would have been in the case of two 
dedicated threads executing the reading and writing methods directly. 
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Whatever order the events occur in, the net result is that consuming threads end up with a reference 
to a multiplexor event (populated multiplexor connection), and this in turn has a reference to its 
provider (in this case a transient store event), which has a reference to its retrieved data buffer. In 
order for the thread to access the data buffer it simply has to traverse (in this case) three pointers. In 
practice, the translator will automatically generate this code, and the thread will actually be returned a 
reference to the store event. In the case that the multiplexor and/or store are actually hosted on a 
remote machine, the runtime will transparently move the data between machines and so the 
application code will not be affected (the runtime will still return a reference to the event). 

 
It should also be clear from the above, that in the typical case where there are many more executable 
methods than workers, that most of the time the system owned multiplexor will have ‘available-events’ 
and the worker threads will not block. Also, note that in this specific example, both methods could 
have been given a reentrancy of ‘N’, the store could have been given a depth of ‘2N’ and the result 
would have been a concurrency of ‘2N’ (potentially keeping 2N cores active). 

In practice leaf providers like stores and/or semaphores are seldom more than two or three objects 
away from root consumers like methods, call-backs or threads and few CLIP applications to date have 
spent more than 2% of their CPU budget executing in the runtime (although this is clearly dependant 
on choice of grain size). This means that they can scale extremely well. Also note that the relatively 
small overhead required for event propagation, replaces to a large extent, the much bigger overhead 
that would have been required to context switch between conventional operating system threads. 

4.6 Flow Control 
The previous section addressed event propagation but did not consider the problems that arise when 
two adjacent objects (exchanging events) are located in different executable processes. This raises 
the general problem of inter-process flow control and is important for a number of reasons. It is 
essential for example that a process can be stepped in a debugger without loss of data from 
neighboring processes. This section addresses this specific aspect of inter-object communication. 

The diagram below illustrates the very simple case of three methods on one machine, writing to three 
methods on an adjacent machine and assumes that their exchanges are not synchronized (requiring 
three independent parallel lines of communication). Clearly, if one particular recipient is unable to 
receive due to a transient load or blockage, its neighbors must not be prevented from continuing to 
exchange events. This is a basic requirement but one that can raise issues. 
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Because sockets (and most equivalents) are relatively expensive resources, each process pair is 
typically constrained to use a single socket, even though logically there are many communicating 
pairs (as in the above diagram). This is probably a practical constraint for any generic scheme.  

Typically, writing threads send to the socket directly, but in the receiving process there is usually a 
single ‘message manager’ thread that reads messages and passes them to the appropriate local 
thread (or processes them directly). In most cases, the message has a ‘type’ in its header, and the 
receive thread uses this to determine appropriate action. This scheme is illustrated below using CDL 
notation, although in practice distributed CLIP applications do not need to use this kind of approach 
unless they are connecting to a legacy non-CLIP application (they only need the simple method code 
above). 

 
There are a number of problems with this approach. If for example, one of the local processing 
threads is busy or blocked, then the receive thread could also block because when the receive buffer 
eventually fills, it has nowhere to write subsequent incoming messages; this in turn will block all of the 
incoming messages behind it. So if one particular line of communication is blocked, but adjacent lines 
must continue to flow, then the blocked line’s data must still be read from the socket regardless, and 
must therefore be put somewhere until its recipient is ready to receive it. 
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Unfortunately, in the general case, there is no limit to the number of messages that could be sent to a 
given receiver, and so there is no guarantee that eventually the receiving process will not run out of 
storage space. What this means, is that the receiver must have a finite number of available receive 
buffers, and the sender must not send until the receiver has a buffer that is available to receive; and 
the problem that this then raises is latency. It might not be practical for the sender to issue a request 
to send and then wait for an acknowledgement each time it needed to send because the turn around 
time would probably be large compared with the elapsed transmission time (introducing latency).  

Without solicitation, the receiver cannot simply send the store’s ‘ready for write’ event each time a 
buffer becomes available because in the general case a store may have many writers and there is no 
way to determine which one should be sent the event without knowing the identity of the senders that 
intend to send (and these could be more numerous than the number of available buffers). Obviously 
the ‘ready to write’ cannot be sent to more than one potential sender without the risk that they will all 
send simultaneously. 

Collectors (introduced earlier) provide a solution to this problem. Consider the case of a method that 
reads input from a local store, and then writes output to a store that is assumed to be located on a 
remote machine. The diagram below shows this case with the collector drawn explicitly (to make the 
point clearer). 

 
There are two collection schemes; sequential and random. In the former case, events are requested 
in strict connection order (to allow for the controlled acquisition of locks), and in the latter case they 
are collected randomly (first come first served). It is generally useful to have write-access to transient 
stores early in the sequence; this will reduce latency, especially if the target store is on a remote 
machine. What this means is that methods typically request and acquire, write-access, before their 
‘read-able’ inputs arrive (hiding latency). In practice, the runtime will generally start requesting the 
next iteration’s write access as soon as a method returns from its current iteration, in fact it is possible 
to run-ahead and request more than one write (but this requires extra buffers). 

Similarly, circuit logic can be used to ensure that write requests are not issued until a method has the 
potential to execute (so that write-able buffers are not gratuitously requested). An obvious example 
would be to organize collection so that particular write requests are not issued until critical read/write 
requests have completed. The first example below illustrates a compose-able case where random 
write collection will only begin when a first critical read has arrived. The second example illustrates a 
random collector, that requests from a child collector that in turn ensures that a set of arbitrated stores 
are collected in a specific order. 
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As discussed above, there is one further property of collectors (referred to as reentrancy), which 
allows them to have more than one asynchronous collection sequence active at any given time. This 
means that a given method for example, can issue write requests for the next ‘N’ invocations in 
advance, and this technique has been used for a number of latency-critical real-time applications. 

It should be noted however, that if there are more requestors than buffers then there is no guarantee 
that latency will be reduced optimally; but crucially, the scheme will ‘limit’ memory consumption, will 
never block, and usually realizes minimum latency (in most cases it hides it altogether). 

4.7 Accretion 
‘Accretion’ provides a means of statically partitioning an application into one or more component 
processes.  ‘Colonization’ (the master/slave model) then provides the option to dynamically schedule 
any of these ‘processes’ across any number of ‘slave’ machines. 

As discussed earlier, CLIP applications comprise one or more interconnected circuits and as such do 
not have any inherent notion of discrete executable processes. In order to allow maximum flexibility, 
the mapping of logical circuitry to physical processes is a separate second-stage operation. Each of 
these processes can then be executed autonomously, or if required, can be executed holographically 
through the recruitment of nest-able colonies. This therefore requires a number of runtime services. 

When each process first executes it needs to locate each object that it is responsible for connecting 
to. By default consumers connect to providers but this is a configurable option. The runtime therefore 
needs to provide a discovery service and this can use a dedicated registry server, or for turn-key 
systems can nominate any accreted process to act as registrar. 

The first stage is to locate and connect to the registrar (unless the executing process is the registrar). 
The second stage is to instantiate all circuitry and to register public objects (visible to adjacent 
processes). The third stage is to locate and connect to all server processes. Note that connection to 
adjacent processes is a driver issue and the runtime implements a logical port abstraction that is 
implemented from the available platform protocol. In the case of asymmetric shared memory systems 
like the Mercury platforms communication is implemented using data passing (sender writes directly 
into receivers memory), in the case of networks (typically TCP/IP) data is transmitted and received 
through sockets.  

The important point is that these are driver issues and the runtime simply sees a logical port 
abstraction that can be implemented from more or less any communication mechanism (to date 
anyway). The application that sits above the runtime’s logical port layer only sees a single virtual 
process that logically communicates by reference. 
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The result of this is that if two objects find themselves in the same symmetric address space they will 
communicate by reference, if they are in separate asymmetric spaces they will move the data directly 
to the target destination (only one physical move, typically by DMA), and if they are separated by 
some serial connection (e.g. Ethernet) then they can communicate using a socket style scheme. 
Because these are driver issues, communication can be optimally implemented for any given 
platform. 

4.8 Scheduling and Colonization 
The earlier ‘Event Propagation’ section provided a brief overview of how the event manager works, 
and in fact at SMP (autonomous symmetric shared memory process) scope, load balancing is fairly 
straightforward because most target operating systems will schedule the worker threads to available 
CPUs very efficiently without intervention. Also, as explained earlier, methods at a given utilized 
priority will have their own prioritized worker threads and so preemptive execution is also taken care 
of. 

However, in years to come, as the number of cores increases, bus bandwidth is expected to become 
a bottleneck and cache utilization will therefore become ever more important. This may mean that the 
operating system scheduler may need to be over-ridden so that the CLIP runtime can use its 
knowledge of circuit connectivity to make optimal use of this cached data. In fact this is already an 
issue at network scope, and this section explains how the distributed scheduler utilizes knowledge of 
method connectivity to manage processor load balance and also minimize network bandwidth for the 
more general case of distributed applications (more than one executing process). It should be 
apparent from the explanation that follows, that the same algorithm could be applicable to bus bound 
shared memory platforms. 

In the general case CLIP applications are accreted to more than one sub-system and each of these is 
then scheduled holographically.  Each of these is referred to as a ‘colony’.  However, each colony can 
also be scheduled as a colony of colonies and so on.  This section describes the issues that arise 
from the scheduling of a single sub-colony. 

Essentially, there are three categories of task (implemented through methods etc). The first of these 
are tasks that are constrained to execute on particular machines (static scheduling). Typically, this 
occurs because the task needs particular resources that are only available on certain platforms and 
these might include; storage devices, accelerator boards, GPUs and so on. Under these 
circumstances the programmer can instruct the scheduler to pin these particular tasks so that they 
always execute within the specified logical process. 

The second type of task would be those that are not physically constrained to execute on any 
particular machine, but have a high investment in state (accumulated from earlier executions). An 
example would be a Finite Difference Time Domain (FDTD) calculation that needs to keep all of the 
data from the previous time-step in order to calculate for the current time-step. These tasks can be 
pinned to a particular machine but given a hysteresis so that they only reorganize periodically or when 
directly instructed. In the FDTD case this would occur if a slave were recruited or retired, and this 
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would allow the scheduler to redistribute the calculation in order to accommodate the new load-
balancing scenario and optimize scalability (see memory management below). 

The third type of task would be those that can be ‘floated’; and in this case the scheduler is free to 
dynamically allocate these tasks to any available machine in the colony. Note that this is possible 
because as the term ‘holographic’ suggests, all of the slave processors have all of the code to 
execute all of the tasks in categories two and three above.  

As seen earlier, each task is uniquely identified by their system owned multiplexor link number, and so 
dispatching a task to a slave is a lightweight operation that does not involve the dynamic transfer of 
code (for most platforms). However, in order to execute a given task, the slave needs access to inputs 
and outputs, and in some cases state from the previous execution. This means that shared data also 
has to be distributed holographically and this issue is addressed in the memory management section 
below. 

 
Each sub-system colony has one ‘master’ process that executes an instance of the scheduler which 
needs to keep track of the current distribution of data and the current distribution of tasks; and use 
this information to decide where to execute the floating task stream. The colony also contains a 
scalable number of slave processes that execute the task stream and keep the master informed of 
their progress. The scheduler has four goals; 

Firstly, for real-time applications, it has to ensure preemptive execution. This means that there should 
never be an unscheduled task at priority ‘N’, if there is a machine in the colony executing at ‘M’ where 
‘N’ is greater than ‘M’. Typical real-time systems often need to execute more than one processing 
chain in parallel, and a standard technique is to raise the priority of the higher rate chains; so a 10Hz 
chain would have a higher priority than a 4Hz chain. This means that the 10Hz tasks aren’t backed up 
waiting for the slower 4Hz tasks to complete (otherwise unacceptable latencies would be likely). 
Without colony scope preemption each chain would have to be given its own dedicated sub-set of the 
hardware and would lose many of the benefits of holographic processing (see ‘benefits’ below). 

Secondly the scheduler needs to keep the total load as evenly distributed as possible and this is 
essential for good scalability characteristics. Since there are usually many possible scheduling 
permutations that meet the preemption requirement equally well, the scheduler can identify a sub-set 
that also keeps load as even as possible. The profiler output below shows a network application 
running on a heterogeneous collection of machines (different core speeds and core counts). 
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Thirdly, if there is still more than one way to meet both preemption and load-balance requirements the 
scheduler will try and identify a scheme that minimizes the resulting network traffic. In other words it 
aims to send tasks to data, rather than data to tasks. This is discussed in more detail in the next 
section. 

Finally, in order to provide scalability, the scheduler also needs to hide (or at least minimize) 
communication latencies. These can be particularly problematic when scatter/gather type approaches 
are applied to non-deterministic calculations (where execution time is data dependent). In order to do 
this, the scheduler needs to be able to start dispatching the ‘next’ task whilst the slave is still 
executing one or more ‘previous’ tasks, and the number of tasks that a slave processor can be 
simultaneously allocated is referred to as ‘task-overlap’.  

By default, all slaves have an overlap of two; so that one task can collect its inputs whilst another is 
executing. However, in order to allow fine tuning for highly non-deterministic calculations this can be 
over-ridden by the application and set to any required value. If too many tasks are allocated then 
latency will be low, but there is a risk that the last slave to finish could in some cases, hold up 
adjacent slaves from progressing to the next set of tasks; and the result would be less efficient load 
balance.  

Optimal performance is achieved when the task overlap is sufficiently big to hide latency, but no 
bigger; thus giving the scheduler the most freedom to achieve a good load balance. Clearly, there are 
applications where communication bandwidth is the limiting resource and under these circumstances 
it is not possible to hide latency altogether, although it can at least be minimized. 

One last point that is worth making is that because the scheduler seeks task affinity (sends tasks to 
machines that already own their inputs), load balance is skewed (biased towards particular machines) 
until the system becomes heavily loaded. This is considered the best strategy because it minimizes 
network usage and there is little point in gratuitously spreading the load until the ‘whole’ task requires 
it. Underutilized networks may not therefore appear to show balanced load, but this is intentional. 

4.9 Memory Management 
CLIP applications provide four types of data object and this section explains how the distributed 
memory manager ensures that each process in the application maintains a consistent view in each 
case. 

The first object to consider is the arbitrated store which deals with shareable persistent storage (an 
equivalent for class state, file-scope data etc.). There are several modes of operation. In the first, 
remote references (accesses from processes that do not own the store) are directed to the definitive 
instance (typically owned by the colony master). If the remote process is updating the store, then it 
may need to transiently lock it. The manager has to keep track of this, so that if the client process 
exits, the lock can be automatically relinquished and avoid leaving the server in an unrecoverable 
state. 

In the second mode of operation, the client can subscribe to the store’s updates which are then 
transparently broadcast to all subscribers. This latter mode can save bandwidth for cases where store 
reads outnumber store writes significantly. Also, if the carrier protocol supports a multicast, then this 
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can be a very efficient alternative to direct read access. However, because of communication 
latencies there is no guarantee that all readers will see the update simultaneously. This may not 
matter for some cases such as updating a GUI screen to reflect an updated value or values, but in 
other cases it does. 

 
If it is important that multiple consumers have a consistent view of a particular instance of persistent 
shared storage then the best way to ensure consistency is to have each consumer access the store 
through a shared distributor object. The data ‘being read’ will not be update-able until all consumers 
have finished with the data, but if it is suitably buffered, updaters will not be blocked if they attempt to 
access the store while the distributor holds it open. As soon as the distributor closes, the updated 
data instance will automatically become the current data instance. 

There are also two types of non-shareable persistent storage than can be associated with a method 
instance and these are referred to as ‘workspace’ and ‘state’ respectively.  

Workspace is provided for two cases of operation. The first is where the method needs scratch 
workspace that does not need to persist after execution, but cannot be created on the standard stack 
(maybe variable-sized or too large); and the second is where storage is used to create write-once 
/read-many data such as tables of coefficients that are populated at initialization and persist. In both 
cases, this data can be re-instantiated within each slave process and does not need to be moved (it 
exists wherever the method is scheduled). 

The second type of non-shareable persistent storage is the kind that is updated and maintained 
between method invocations, and this is referred to as ‘state’. Examples would be some filters, 
moving averages, random number generators and so on. This data needs to be present in the slave 
before a given method can be executed. So if a method is executed by slave1 for iteration ‘N’, and the 
scheduler dispatches the same method to slave2 for iteration ‘N+1’, then execution must be delayed 
until slave-2’s state is up to date. There are two schemes, and these are configurable and mixable. 

In the first ‘endpoint’ case, the master process maintains the definitive copy of the designated 
method’s state, and after each invocation, the method’s state object is flushed back to the master 
process. This is generally required for mission critical applications where losing state might be 
serious, and if the producing slave does exit before its state has been safely returned, the scheduler 
can reschedule the task to a surviving slave so that the state is simply recalculated. The scheduler 
now needs to send its copy of the state each time it schedules the method; although as described 
above, the scheduler will try and send the method invocation task to the slave that holds the most up-
to-date data, and so if this results in the method executing in the same slave on successive 
invocations there will be no need to re-send the state. It is also worth noting that in practice most 
methods are actually stateless. 



Copyright © Connective Logic Systems Ltd 2009 

 
In the second ‘float-point’ case, the latest method state object is left in the last slave to execute it (and 
not flushed to the master). As with the previous case, a slave cannot execute a method until its state 
has arrived but in this case the operation may involve sending two messages; the first instructs the 
slave owning the definitive state to send it to the target slave, and the second involves sending the 
task itself to the target. Only when both have arrived at the target can execution begin. This scheme 
can potentially save bandwidth because it avoids the case where state is sent back to the master, and 
then resent again to some new target (replaced by one direct send from a method owning definitive 
state to a method not owning it). The limitation is that whilst slaves can still be gracefully retired, if 
they fail at a critical time, definitive state could be lost.  Note that the latencies associated with the 
movement of state and data are usually hidden by the ‘task-overlap’ capability and slaves are seldom 
blocked waiting for data to arrive. 

Finally, the fourth type of storage is shareable transient data; which is the type of data held in 
transient stores and provides a distributable equivalent for local stack data (invalidated when no 
longer referenced). The message manager needs to ensure that all readers access the latest 
instances consistently, but needs to do so without moving data gratuitously. As with method ‘state’, 
transient data can be designated as ‘end-point’ or ‘float-point’. In the former case, remote writes are 
flushed back to the definitive object, but in the latter, they are not. The same advantages and 
disadvantages that applied to state data also apply in this case. 

 
The scheduler and memory manager collaborate so that when the former allocates a task to a given 
slave, the latter can update its bitmaps to reflect the fact that the scheduled method’s output is current 
and definitive in the given process. So in the example above, the definitive data that exists in the 
slave that executed method A (slaveA) needs to be copied to those slaves that execute methods B 
and C (both require 'a' as input). 

The scheduler also uses the memory manager’s information to select the ‘best’ machine to execute a 
given task. So in the example above it will attempt to execute methods B and C on the machine that 
executed method A (and thus reduce ‘copying’ bandwidth). And as with state, when the scheduler 
dispatches a task to a target slave, it will typically issue a number of simultaneous requests to 
adjacent slaves instructing them to send any outstanding copies of definitive data to the target, and 
execution will only begin when all data is up-to-date. In order to hide the latencies associated with 
these movements, the scheduler has a concept of task overlapping and this is discussed in the earlier 
‘scheduling’ section. 
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In addition to coordinating the consistency of distributed shareable objects, the memory manager also 
needs to address a number of other issues and in particular needs to provide its own heaps (referred 
to as segments). There are a number of reasons for this. Firstly some platforms provide dedicated 
fast/slow memory and applications therefore need a portable means of allocating particular data 
objects to particular physical address spaces.  

Secondly, many optimized libraries take advantage of data alignment, and so it is often necessary to 
guarantee object alignment in order to optimize performance. Also, some memory allocation schemes 
suffer from fragmentation and for real-time applications a deterministic free is also required.  

For debugging purposes it is useful to have a concept of red-zoning which is a technique that has a 
high probability of detecting writes to a data object that have over-run or under-run and the manager 
implements this in a transparent manner. 

Internally, the manager uses a technique that means that heterogeneous networks of symmetric and 
asymmetric processors can share references to distributed objects (segment and offset) globally, and 
again this is transparent to the application which only ever sees objects at a local virtual address. 

4.10 Dynamic Recruitment/Retirement 
A defining feature of holographic processing is that slave processing power can be dynamically 
recruited and/or retired at any stage of execution. 

Recruitment is a relatively straightforward operation that involves clients connecting to servers, and 
slaves connecting to masters (for the particular instances being executed). The runtime provides a 
discovery service that means that a given application instance can be mastered on any machine and 
clients/slaves simply need to specify an instance name to the registry server (allowing multiple 
application instances to share the same resources if required). For release implementations, any 
application process can be nominated to act as registrar, which means that a dedicated discovery 
server is not required. 

Retirement is a considerably more involved process and again there are two cases. In the case of a 
‘graceful’ exit (slave retires, or is retired; without failure) the slave needs to re-distribute any definitive 
data, and relinquish all the critical resources that it holds (e.g. arbitrated store locks or subscriptions to 
distributors); it can then disconnect from the colony and exit. 

In the case of a ‘forced’ exit however (e.g. switching off the power), the situation is more difficult. Even 
if the server keeps track of all resources, and even if all data is ‘end-point’, the scheduler and memory 
manager need to ensure that any/all partially calculated data owned by the ‘exiting’ process can be 
recalculated, and so the scheduler needs to be able to roll back and recalculate any data that is 
incomplete or lost. At the time of writing, algorithms that achieve this have been identified and their 
implementation is ‘work-in-progress’. 

Whilst this does reduce the chances of an unrecoverable problem, it still leaves masters as single 
points of failure. This can however be addressed by the application, and in fact CLIP was used to 
develop a redundant server baggage handler demonstrator that could recover from forced exit. It 
should however be possible to take a generic approach to the problem (based on method rollback 
and data sharing), and again this is work-in-progress. 

4.11 GUI Interfacing 
Graphical User Interfaces (GUIs) are required for a large proportion of applications and the arrival of 
multi-core may turn out to be an issue for a significant percentage of these. Some have argued that 
GUIs do not need the additional performance offered by multi-core and so it will be a non-issue. 
Others point out that sophisticated GUIs themselves were not required twenty years ago, but once a 
competitor exploited the opportunity; most had no choice but to follow. Certainly the CLIP toolset has 
benefited from its ability to offload various tasks to multiple cores. 

When all is said and done, if an application displays an hour glass for any significant period, then it 
could probably benefit from being able to offload processing to adjacent cores. Last but not least, it is 
worth bearing mind that at the time of writing processor clock speeds have already dropped from their 
peak (whilst core count is now typically four), and this trend may continue. This means that whilst 
single threaded performance has increased a thousand-fold over the last twenty years or so, it is now 
likely to decrease. 
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The issue stems from the fact that most GUI technologies (MFC, Windows QT, XT etc) are based on 
the notion of a message pump and are therefore intrinsically single threaded. What CLIP does is to 
provide a portable means of integrating message pumps with the worker thread pool allowing for a 
very straightforward offload model. 

Essentially there are two cases to consider. Firstly there are events provided by the GUI to the 
application (referred to here as inputs). Secondly there are events provided to the GUI by the 
application (referred to here as outputs). The former are primarily controls and are typically initiated by 
mouse clicks or keystrokes. The latter typically comprise displayable information but also need to 
include notifications indicating external task status (e.g. an offloaded process has completed). 

Inputs (where the GUI writes to the application) are relatively easy to deal with and CLIP provides the 
notion of an interface object that allows the GUI thread to connect to external circuitry and initiate 
blocking/non-blocking operations in the same way that any other method or thread can. Outputs are 
slightly more involved because each message pump has its own mechanism for integrating external 
events. The runtime therefore implements the notion of a ‘GUI call-back’ which is triggered by any 
circuit event and executes within the message pump in exactly the same way that a mouse or 
keyboard event would. 

 
The circuit above illustrates how this works in practice and uses the example of the CDL editor’s 
circuit translate function (somewhat simplified). The sequence starts with the GUI thread executing a 
native call-back in response to the ‘translate’ button being pressed. It disables the ‘translate’ button 
and then writes the filename of the application that requires translation to the remote translator circuit. 
The translator then executes asynchronously (scheduled across all the available worker threads in the 
colony). Each time an error is generated this triggers the error call-back which executes in the GUI 
thread allowing errors to be displayed on the screen. On completion, the translator writes a 
notification to the ‘status’ store. This triggers execution of the ‘completion’ call-back which executes 
back in the message pump. In this case it simply needs to re-enable the ‘translate’ button. The GUI 
thread can continue to execute other functionality throughout the translation operation. 

4.12 Portability of the Runtime 
It should be apparent from earlier discussion that the runtime is able to abstract most platform details 
from the application, but in order to provide application portability, it is necessary to implement the 
runtime itself on a broad range of targets. This section considers the portability of the runtime itself. 
The stack is actually very simple; the runtime contains most of the code, and calls down into the driver 
layer. In order to target a new platform, only the lower layer actually requires change. In order to run 
on a given platform, the application simply needs to link with the runtime and then the appropriate 
drivers. There are four categories of driver; 

The first category deals with operating system abstraction and provides the runtime with a standard 
API that the driver implements from the target O/S. There are a few dozen entry points and these deal 
with issues like threading, determining the number of available cores, and other related functionality. 
At the time of writing the runtime has been ported to Microsoft Windows (including CE), most 
implementations of Linux, MacOS, VxWorks, Greenhill’s Integrity, Solaris and Mercury. 
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The second category deals specifically with asymmetric shared memory platforms and includes 
mechanisms to map memory, translate addresses, move data and manage inter-process notifications. 
CLIP has been ported to Mercury and DY4 platforms. 

The third category deals specifically with distributed memory (message based) platforms and includes 
mechanisms to connect, disconnect, multicast, send and receive. At the time of writing the drivers 
support any device with a Berkley socket API. 

The fourth category deals with the standard GUI interface and the driver needs to execute a GUI call-
back each time a CLIP event is sent to the GUI. At the time of writing there are drivers for MFC and 
Windows QT. 
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5 Benefits 
This section summarizes the perceived benefits of the CLIP technology (connective logic and the 
CORE runtime). 

5.1 Portability 
There are a number of technologies that claim to provide portability, but in many cases this actually 
just means operating system level portability. The CLIP technology provides a means for ensuring 
that applications will execute repeatably on different architectures (symmetric, asymmetric and 
distributed memory) and crucially, will do so regardless of topology. This provides the additional 
benefit that applications can generally be developed and maintained as single processes, but 
deployed on any target platform without change; which has the knock-on benefit that hardware choice 
can be deferred until late in the program when CPU requirements have become more established. 

For the reasons discussed in earlier sections of this article, generically re-mapping an application’s 
functionality from ‘N’ machines to ‘M’ machines is a non-trivial problem; so much so that the UK MoD 
will not usually take delivery of mission critical real-time applications that utilize more than 50% of 
available CPU. This mitigates the almost inevitable problems that arise as functionality becomes more 
sophisticated (and cycle hungry) over time. Because CLIP applications are demonstrably scalable 
(CPU can be recruited at any stage to accelerate execution) this requirement was dropped for the 
UK’s Surface Ship Torpedo Defense system (SSTD) and replaced by the less onerous requirement 
that there must be physical expansion slots available in the delivered platform.  

5.2 Performance Issues 
Although it must be true that application programmers operating with low level threading and socket 
APIs can at least match the performance of CLIP applications, in practice there are a number of 
optimizations that are simply not practical to implement within typical one-off application budgets. This 
is especially true in the case of distributed memory architectures (e.g. multiple networked machines) 
where major issues include; dynamic load-balancing, preemptive execution, task overlap, float-point 
data, smart scheduling (tasks sent to data rather than data sent to tasks) and shared data 
multicasting. 

In fact for the reasons outlined in the earlier sections above it is actually quite difficult to write portable 
programs that don’t gratuitously move data between threads in the same symmetric address space 
(very inefficient hardware utilization). It is also hard to develop programs that scale to the particular 
multi-core machine that they are executed on without proliferating unlimited numbers of threads and 
spending significant amounts of CPU context switching between them. 

It is particularly difficult to write applications that minimize scheduling latency for the general case of 
irregular concurrency, especially when concurrencies reach four or more.  

5.3 Holographic Processing Benefits 
Holographic processing as defined by this article has a number of intrinsic benefits; 

Firstly, the ability to dynamically recruit and retire CPU at any stage of the calculation and load 
balance across heterogeneous collections of machines with arbitrary numbers of differing speed 
cores means that applications can make best use of available hardware. It also means that migration 
to multi-core will not require continual adjustments (or worse still re-writes). 

Machines can be retired from the colony at any stage of execution without loss of data and this has 
two benefits. Firstly, machines that form part of turn-key systems can be retired for routine 
maintenance, and secondly, any machines that are not in use during ‘off-peak’ periods can be 
recruited to perform batch calculations.  

Network preemption means that when a high priority task becomes schedulable, all the machines in 
the network can be transiently recruited to its execution and this can significantly reduce turn-around 
times for latency sensitive tasks such as those in the financial and military sectors. 

Finally, because all machines can provide all functionality there are less single points of failure. 
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5.4 Object Oriented Paradigm 
One of the principal goals of the CLIP project was to give the user an object oriented programming 
paradigm, and in particular to provide a concurrent equivalent of a class. Although this is primarily an 
API issue, it does require the runtime to have certain properties. CDL provides the notion of a ‘circuit’ 
which has many of the properties of a concurrently executable class; aggregation, public and private 
state, multiple prototyped entry points, and a concept of inheritance. 

Encapsulation is absolutely essential because without it, code can become dispersed and difficult to 
re-use (typically the case with conventional threading and messaging approaches). Another obvious 
benefit of encapsulating concurrency is that contiguous logic can be analyzed for potential deadlocks 
and races, and furthermore, this process can be automated.  

When the concept of private state is combined with the runtime’s collector object, locks only need to 
be exposed to programmers through access functions that ensure ordering, and crucially these 
sequences can be acquired asynchronously without having to block any threads of execution. In most 
cases deadlocks are completely eradicated. 

Another property of classes (and hence circuits) is that their internal logic can be modified without 
impacting any external logic. This is particularly useful for parallel programs because it means that 
particular components can be optimized for specialized targets such as accelerator cards. 

Perhaps most importantly of all however, because the basic operations that underpin CLIP are 
compose-able (and nest-able), so are circuits themselves. And this allows the development of libraries 
of re-usable components. A lot of the time, programming in CLIP is as simple as dragging and 
dropping pre-fabricated components and connecting them together to create a particular application. 
This extends the concept of re-use from sequential libraries to concurrent libraries, and the fact that a 
re-used component may actually distribute itself across the entire available network is completely 
transparent to the programmer who simply needs to connect the components inputs and outputs in 
accordance with its prototype. 
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6 Case Study 
The UK’s surface ship torpedo defense system was designed by a sonar expert with no programming 
experience whatsoever, but he was able to create the entire top level infrastructure for the system 
using CLIP. The result was that 40% of the deliverable code was generated from CDL diagrams, and 
although the original target was a PowerPC based asymmetric multi-processor running VxWorks, 
almost all development and debugging was carried out on standard Windows laptops. The system 
has been in service for several years (24/7) and has never experienced a deadlock or race of any 
kind. The 27 month development program was completed 6 months ahead of schedule. 

 
Because it is portable and extendible and can be maintained on available desk-top hardware, SSTD 
has an extremely low cost of ownership and will shortly go into service with the Turkish and Australian 
Navy. It is also currently being trialed by the US Navy. 
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